Introduction to Database Systems
CSE 414

Lecture 12: Json and SQL++

CSE 414 - Autumn 2018

Announcements

» Office hours changes this week
— Check schedule

* HW 4 due next Tuesday
— Start early

« WQ 4 due tomorrow

CSE 414 - Autumn 2018

JSON - Overview

« JavaScript Object Notation = lightweight
text-based open standard designed for
human-readable data interchange.
Interfaces in C, C++, Java, Python, Perl,
etc.

* The filename extension is .json.

We will emphasize JSon as semi-structured data

JSon Terminology

« Data is represented in name/value
pairs.
» Curly braces hold objects

— Each object is a list of name/value pairs
separated by , (comma)

— Each pair is a name is followed by "'(colon)
followed by the value

e Square brackets hold arrays and values
are separated by ,(comma). 4

JSon Syntax

{ "book": [

{"id":"e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015

}s

{"id":"e7",
"language": "C++",
"edition": "second"

"author": "E. Sepp",
"price": 22.25

CSE 414 - Autumn 2018 5

JSon Data Structures

« Objects, i.e., collections of name-value pairs:
- {“namel”: valuel, “name2”: value2, ..}
— “name” is also called a “key”

 QOrdered lists of values:
- [objl, obj2, obj3, ...]

CSE 414 - Autumn 2018

Avoid Using Duplicate Keys

The standard allows them, but many implementations don't

Ilid":"07",
"title": "Databases”,

"author": "Garcia-Molina", >

"author": "Ullman",
"author": "Widom"

}

"id":"07",
"title": "Databases”,
"author": ["Garcia-Molina",
"Ullman",

"Widom"]

CSE 414 - Autumn 2018 7

JSon Primitive Datatypes

Number

String
— Denoted by double quotes

Boolean
— Either true or false

nullempty

CSE 414 - Autumn 2018

JSon Semantics: a Tree !

{“person”: -

[{“name”: “Mary”,

“address”:
{“street”:“Maple”,

“no”: 345, @ !

“city”: “Seattle”}},
{“name”: “John”,

“address”: “Thailand”, ,
“phone”:2345678}} Mary @Q@ Thai !
| Coomn > —C)

CSE 414 - Autumn 2018 9

JSon Semantics: a Tree !

{“person”:
[{“name”: “Mary”, Ob
“address”:

{“street”:“Maple”, P
“no™:345,

“city”: “Seattle”}},
{“name”: “John”, P
“address”: “Thailand”,

“phone”:2345678}}

]

[Recall: arrays are ordered in Json!} 10

JSon Data

JSon is self-describing

Schema elements become part of the data
— Relational schema: person(name, phone)

LN 11 L P11

— In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

Consequence: JSon is much more flexible
JSon = semistructured data

CSE 414 - Autumn 2018

11

Mapping Relational Data to JSon

person

name phone name phone name phone
“‘John” 3634 “Sue” 6343 “Dirk” 6363

{“person”: [

{“name”: “John”, “phone”:3634},
{“name”: “Sue”, “phone”:6343},

Person

name phone
John 3634
Sue 6343
Dirk 6363

{“name”: “Dirk”, “phone”:6383}

]

}

CSE 414 - Autumn 2018 12

Mapping Relational Data to JSon

May inline multiple relations based on foreign keys

Person

name phone

John 3634

Sue 6343
Orders

personName |date |[product
John 2002 | Gizmo
John 2004 | Gadget
Sue 2002 | Gadget

{“Person”:
[{"name": "John",
"phone" :3646,

"Orders":[

{"date":2002, "product
{“date”:2004, "product

]

}s

{"name": "Sue",
"phone":6343,
"Orders":[

{"date":2002, "product"

]
}
]
}

":"Gizmo"},
11} : IlGadgetll}

:"Gadget"}

Discussion: Why Semi-Structured Data?

« Semi-structured data model is good as data
exchange formats

— i.e., exchanging data between different apps
— Examples: XML, JSon, Protobuf (protocol buffers)

* Increasingly, systems use them as a data
model for databases:

— SQL Server supports for XML-valued relations
— CouchBase, MongoDB: JSon as data model

— Dremel (BigQuery): Protobuf as data model

CSE 414 - Autumn 2018 14

Query Languages for

Semi-Structured Data

« XML: XPath, XQuery (see textbook)
— Supported inside many RDBMS (SQL Server, DB2, Oracle)
— Several standalone XPath/XQuery engines

* Protobuf: SQL-ish language (Dremel) used internally
by google, and externally in BigQuery

« JSon:
— CouchBase: N1QL
— Asterix: SQL++ (based on SQL)
— MongoDB: has a pattern-based language
— JSONiIq http://www.jsoniqg.org/

*15

http://www.jsoniq.org/

Asterixecs

 AsterixDB

— No-SQL database system
— Developed at UC Irvine

— Now an Apache project, being incorporated into
CouchDB (another No-SQL DB)

They are
hiring!

 Uses Json as data model

* Query language: SQL++
— SQL-like syntax for Json data

CSE 414 - Autumn 2018 16

Asterix Data Model (ADM)

Based on the Json standard
Objects:

- {“Name”: “Alice”, “age”:. 40}
— Fields must be distinct:
{“Name”: “Alice”, “age”: 40, “age>:58}
Ordered arrays:
- [1, 3, “Fred”, 2, 9]
— Can contain values of different types
Multisets (aka bags):
- {{1, 3, “Fred”, 2, 9}}
— Mostly internal use only but can be used as inputs

— All multisets are converted into ordered arrays (in arbitrary
order) when returned at the end

Can’t have
repeated fields

CSE 414 - Autumn 2018

17

Examples

What do these queries return?

SELECT x.phone
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

SELECT x.phone
FROM {{ {"name": "Alice", "phone": [300, 150]} }} AS Xx;

ﬁonly query from

- error ﬂet or array (not object)
SELECT x.phone

FROM {"name": "Alice", "phone": [300, 150]} AS Xx;

18

CSE 414 - Autumn 2018

Datatypes

* Boolean, integer, float (various precisions),
geometry (point, line, ...), date, time, etc

« UUID = universally unique identifier
Use it as a system-generated unique key

CSE 414 - Autumn 2018

19

null v.s. missing
e {"age": null} =the value NULL (like in SQL)
e {"age": missing} ={ } = really missing

SELECT x.b
FROM [{"a":1, "b":2},
{"a":3, "b":null }] AS x;

2}

{llbll:
Answer {"b": null }

20

null v.s. missing
e {"age": null} =the value NULL (like in SQL)
e {"age": missing} ={ } = really missing

SELECT x.b _—

FROM [{"a":]-J "b"IZ}, Answer E t;) 2}
{||a||:3}]

AS X;

SELECT x.b

FROM [{lla||:1, ||bll:2}, Answer {llbll: 2}
{"a":3, "b":missing }] { }

AS X;

21

Finally, a language that we can use!

SELECT x.age
FROM Person AS Xx

WHERE x.age > 21

GROUP BY x.gender
HAVING x.salary > 10000
ORDER BY X.name;

Is exactly the same as

FROM Person AS X

WHERE x.age > 21
GROUP BY x.gender FWGHOS

HAVING x.salary > 10000 lives!!

[TSELECT X.age
ORDER BY X.name;

23

SQL++ Overview

« Data Definition Language: create a
— Type
— Dataset (like a relation)
— Dataverse (a collection of datasets)

— Index
» For speeding up query execution

« Data Manipulation Language:
SELECT-FROM-WHERE

CSE 414 - Autumn 2018

24

Dataverse

A Dataverse is a Database
(i.e., collection of tables)

CREATE DATAVERSE myDB
CREATE DATAVERSE myDB IF NOT EXISTS

DROP DATAVERSE myDB
DROP DATAVERSE myDB IF EXISTS

USE myDB

CSE 414 - Autumn 2018

25

Closed Types

USE myDB;

DROP TYPE PersonType IF EXISTS;

CREATE TYPE PersonType AS CLOSED {
name: string, —
age: 1int,

email: striné€>
}

"name": "Alice", "age": 30, "email": "a@alice.com"}
"name": "Bob", "age": 40}

-- not OK:
llnamell: "Car‘Ol", "|;|: EI: EH: "123456289"}

26

Type

 Defines the schema of a collection

* |t lists all required fields
* Fields followed by ? are optional

e CLOSED type = no other fields allowed
e OPEN type = other fields allowed

CSE 414 - Autumn 2018

27

Open Types

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {
name: string,
age: int,
email: string?

¥

"name": "Alice", "age": 30, "email": "a@alice.com"}
"name": "Bob", "age": 40}

-now 1t’s OK:

"name": "Carol", "age":20, “phone"123456789"} 5

Types with Nested Collections

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
Name : string,
phone: [string]

}

{"Name": "Carol”, "phone": ["1234"]}
{"Name": "David", "phone": [“2345", “6789"]}

{"Name": "Evan", "phone": []}

CSE 414 - Autumn 2018

Datasets

 Dataset = relation

* Must have a type
— Can be a trivial OPEN type

 Must have a key
— Can also be a trivial one

CSE 414 - Autumn 2018

30

Dataset with Existing Key

USE myDB; .
DROP TYPE PersonType IF EXISTS; {“name”: “Alice”}
CREATE TYPE PersonType AS CLOSED { | {“name™: “Bob™}
name: string, e
email: string?

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

CSE 414 - Autumn 2018 31

Dataset with Auto Generated Key

USE myDB; .
DROP TYPE PersonType IF EXISTS; {“name”: “Alice”}
CREATE TYPE PersonType AS CLOSED { | {“name”: “Bob”}
myKey: uuid, "
Name : string, Note: no myKey
email: string? iInserted as it is
autogenerated

USE myDB;

DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)
PRIMARY KEY myKey AUTOGENERATED;

CSE 414 - Autumn 2018 32

This is no longer 1NF
NFNF = Non First Normal Form

One or more attributes contain a collection

One extreme: a single row with a huge,
nested collection

Better: multiple rows, reduced number of
nested collections

CSE 414 - Autumn 2018

33

