
1

Introduction to Database Systems
CSE 414

Lecture 12: Json and SQL++

1CSE 414 - Autumn 2018

Announcements

• Office hours changes this week
– Check schedule

• HW 4 due next Tuesday
– Start early

• WQ 4 due tomorrow

CSE 414 - Autumn 2018 2

JSON - Overview

• JavaScript Object Notation = lightweight
text-based open standard designed for
human-readable data interchange.
Interfaces in C, C++, Java, Python, Perl,
etc.

• The filename extension is .json.

CSE 414 - Autumn 2018 3We will emphasize JSon as semi-structured data

JSon Terminology

• Data is represented in name/value
pairs.

• Curly braces hold objects
– Each object is a list of name/value pairs

separated by , (comma)
– Each pair is a name is followed by ':'(colon)

followed by the value
• Square brackets hold arrays and values

are separated by ,(comma). 4

5

JSon Syntax
{ "book": [

{"id":"01",
"language": "Java",
"author": "H. Javeson",
"year": 2015
},
{"id":"07",
"language": "C++",
"edition": "second"
"author": "E. Sepp",
"price": 22.25
}

]
}

CSE 414 - Autumn 2018

JSon Data Structures

• Objects, i.e., collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}
– “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]

CSE 414 - Autumn 2018 6

2

Avoid Using Duplicate Keys

CSE 414 - Autumn 2018 7

{"id":"07",

"title": "Databases",

"author": "Garcia-Molina",

"author": "Ullman",

"author": "Widom"

}

{"id":"07",

"title": "Databases",

"author": ["Garcia-Molina",

"Ullman",

"Widom"]

}

The standard allows them, but many implementations don’t

JSon Primitive Datatypes
• Number

• String
– Denoted by double quotes

• Boolean
– Either true or false

• nullempty
CSE 414 - Autumn 2018 8

9

JSon Semantics: a Tree !
person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

CSE 414 - Autumn 2018 10

JSon Semantics: a Tree !
person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

Object 0
Object 1

Recall: arrays are ordered in Json!

11

JSon Data

• JSon is self-describing
• Schema elements become part of the data

– Relational schema: person(name,phone)
– In Json “person”, “name”, “phone” are part of the

data, and are repeated many times
• Consequence: JSon is much more flexible
• JSon = semistructured data

CSE 414 - Autumn 2018

Mapping Relational Data to JSon

CSE 414 - Autumn 2018 12

name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”: [
{“name”: “John”, “phone”:3634},
{“name”: “Sue”, “phone”:6343},
{“name”: “Dirk”, “phone”:6383}
]

}

3

Mapping Relational Data to JSon

13

Person
name phone

John 3634

Sue 6343

May inline multiple relations based on foreign keys

Orders
personName date product

John 2002 Gizmo

John 2004 Gadget

Sue 2002 Gadget

{“Person”:
[{"name": "John",

"phone":3646,
"Orders":[
{"date":2002,"product":"Gizmo"},
{“date”:2004,"product":"Gadget"}

]
},
{"name": "Sue",
"phone":6343,
"Orders":[
{"date":2002,"product":"Gadget"}
]
}

]
}

Discussion: Why Semi-Structured Data?
• Semi-structured data model is good as data

exchange formats
– i.e., exchanging data between different apps
– Examples: XML, JSon, Protobuf (protocol buffers)

• Increasingly, systems use them as a data
model for databases:
– SQL Server supports for XML-valued relations
– CouchBase, MongoDB: JSon as data model
– Dremel (BigQuery): Protobuf as data model

CSE 414 - Autumn 2018 14

Query Languages for
Semi-Structured Data

• XML: XPath, XQuery (see textbook)
– Supported inside many RDBMS (SQL Server, DB2, Oracle)
– Several standalone XPath/XQuery engines

• Protobuf: SQL-ish language (Dremel) used internally
by google, and externally in BigQuery

• JSon:
– CouchBase: N1QL
– Asterix: SQL++ (based on SQL)
– MongoDB: has a pattern-based language
– JSONiq http://www.jsoniq.org/

•15

• AsterixDB
– No-SQL database system
– Developed at UC Irvine
– Now an Apache project, being incorporated into

CouchDB (another No-SQL DB)

• Uses Json as data model
• Query language: SQL++

– SQL-like syntax for Json data
CSE 414 - Autumn 2018 16

They are
hiring!

Asterix Data Model (ADM)
• Based on the Json standard
• Objects:

– {“Name”: “Alice”, “age”: 40}
– Fields must be distinct:
{“Name”: “Alice”, “age”: 40, “age”:50}

• Ordered arrays:
– [1, 3, “Fred”, 2, 9]
– Can contain values of different types

• Multisets (aka bags):
– {{1, 3, “Fred”, 2, 9}}
– Mostly internal use only but can be used as inputs
– All multisets are converted into ordered arrays (in arbitrary

order) when returned at the end

17

Can’t have
repeated fields

CSE 414 - Autumn 2018

Examples

What do these queries return?

CSE 414 - Autumn 2018 18

SELECT x.phone
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

SELECT x.phone
FROM {{ {"name": "Alice", "phone": [300, 150]} }} AS x;

-- error
SELECT x.phone
FROM {"name": "Alice", "phone": [300, 150]} AS x;

Can only query from
multi-set or array (not object)

http://www.jsoniq.org/

4

Datatypes

• Boolean, integer, float (various precisions),
geometry (point, line, …), date, time, etc

• UUID = universally unique identifier
Use it as a system-generated unique key

CSE 414 - Autumn 2018 19

null v.s. missing
• {"age": null} = the value NULL (like in SQL)
• {"age": missing} = { } = really missing

SELECT x.b
FROM [{"a":1, "b":2},

{"a":3, "b":null }] AS x;

{"b": 2}
{"b": null }Answer

•20

null v.s. missing
• {"age": null} = the value NULL (like in SQL)
• {"age": missing} = { } = really missing

SELECT x.b
FROM [{"a":1, "b":2},

{"a":3}]
AS x;

{"b": 2}
{ }Answer

•21

SELECT x.b
FROM [{"a":1, "b":2},

{"a":3, "b":missing }]
AS x;

{"b": 2}
{ }Answer

Finally, a language that we can use!
SELECT x.age
FROM Person AS x
WHERE x.age > 21
GROUP BY x.gender
HAVING x.salary > 10000
ORDER BY x.name;

FROM Person AS x
WHERE x.age > 21
GROUP BY x.gender
HAVING x.salary > 10000
SELECT x.age
ORDER BY x.name;

is exactly the same as

FWGHOS
lives!!

•23

SQL++ Overview

• Data Definition Language: create a
– Type
– Dataset (like a relation)
– Dataverse (a collection of datasets)
– Index

• For speeding up query execution

• Data Manipulation Language:
SELECT-FROM-WHERE

CSE 414 - Autumn 2018 24

Dataverse
A Dataverse is a Database
(i.e., collection of tables)

CREATE DATAVERSE myDB
CREATE DATAVERSE myDB IF NOT EXISTS

DROP DATAVERSE myDB
DROP DATAVERSE myDB IF EXISTS

USE myDB
25CSE 414 - Autumn 2018

5

Closed Types

26

USE myDB;

DROP TYPE PersonType IF EXISTS;

CREATE TYPE PersonType AS CLOSED {

name: string,

age: int,

email: string?

}

{"name": "Alice", "age": 30, "email": "a@alice.com"}

{"name": "Bob", "age": 40}

-- not OK:
{"name": "Carol", "phone": "123456789"}

Type

• Defines the schema of a collection
• It lists all required fields
• Fields followed by ? are optional

• CLOSED type = no other fields allowed
• OPEN type = other fields allowed

CSE 414 - Autumn 2018 27

Open Types

28

{"name": "Alice", "age": 30, "email": "a@alice.com"}

{"name": "Bob", "age": 40}

-- now it’s OK:
{"name": "Carol", "age":20, "phone": "123456789"}

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {

name: string,
age: int,

email: string?
}

Types with Nested Collections

29

USE myDB;

DROP TYPE PersonType IF EXISTS;

CREATE TYPE PersonType AS CLOSED {

Name : string,

phone: [string]

}

{"Name": "Carol", "phone": ["1234”]}
{"Name": "David", "phone": [“2345”, “6789”]}
{"Name": "Evan", "phone": []}

CSE 414 - Autumn 2018

Datasets

• Dataset = relation

• Must have a type
– Can be a trivial OPEN type

• Must have a key
– Can also be a trivial one

CSE 414 - Autumn 2018 30

Dataset with Existing Key

CSE 414 - Autumn 2018 31

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

name: string,
email: string?

}

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

{“name”: “Alice”}
{“name”: “Bob”}
…

6

Dataset with Auto Generated Key

CSE 414 - Autumn 2018 32

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

myKey: uuid,
Name : string,
email: string?

}

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)

PRIMARY KEY myKey AUTOGENERATED;

Note: no myKey
inserted as it is
autogenerated

{“name”: “Alice”}
{“name”: “Bob”}
…

This is no longer 1NF
• NFNF = Non First Normal Form

• One or more attributes contain a collection

• One extreme: a single row with a huge,
nested collection

• Better: multiple rows, reduced number of
nested collections

CSE 414 - Autumn 2018 33

