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Introduction to Database Systems
CSE 414

Lecture 12: Json and SQL++
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Announcements

• Office hours changes this week
– Check schedule

• HW 4 due next Tuesday
– Start early

• WQ 4 due tomorrow
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JSON - Overview

• JavaScript Object Notation = lightweight 
text-based open standard designed for 
human-readable data interchange. 
Interfaces in C, C++, Java, Python, Perl, 
etc.

• The filename extension is .json.
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JSon Terminology

• Data is represented in name/value 
pairs.

• Curly braces hold objects 
– Each object is a list of name/value pairs 

separated by  , (comma)
– Each pair is a name is followed by ':'(colon) 

followed by the value
• Square brackets hold arrays and values 

are separated by ,(comma). 4
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JSon Syntax
{  "book": [

{"id":"01",
"language": "Java",
"author": "H. Javeson",
"year": 2015
},
{"id":"07",
"language": "C++",
"edition": "second"
"author": "E. Sepp",
"price": 22.25
}

]
}
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JSon Data Structures

• Objects, i.e., collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}
– “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]
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Avoid Using Duplicate Keys
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{"id":"07",

"title": "Databases",

"author": "Garcia-Molina",

"author": "Ullman",

"author": "Widom"

}

{"id":"07",

"title": "Databases",

"author": ["Garcia-Molina",

"Ullman",

"Widom"]

}

The standard allows them, but many implementations don’t

JSon Primitive Datatypes
• Number

• String
– Denoted by double quotes

• Boolean
– Either true or false

• nullempty
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JSon Semantics: a Tree !
person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}
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JSon Semantics: a Tree !
person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

Object 0
Object 1

Recall: arrays are ordered in Json!
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JSon Data

• JSon is self-describing
• Schema elements become part of the data

– Relational schema: person(name,phone)
– In Json “person”, “name”, “phone” are part of the 

data, and are repeated many times
• Consequence: JSon is much more flexible
• JSon = semistructured data
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Mapping Relational Data to JSon
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name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”: [
{“name”: “John”, “phone”:3634},
{“name”: “Sue”,  “phone”:6343},
{“name”: “Dirk”, “phone”:6383}
]

}



3

Mapping Relational Data to JSon
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Person
name phone

John 3634

Sue 6343

May inline multiple relations based on foreign keys

Orders
personName date product

John 2002 Gizmo

John 2004 Gadget

Sue 2002 Gadget

{“Person”:
[{"name": "John",

"phone":3646,
"Orders":[
{"date":2002,"product":"Gizmo"},
{“date”:2004,"product":"Gadget"}

]
},
{"name": "Sue",
"phone":6343,
"Orders":[
{"date":2002,"product":"Gadget"}
]
}

]
}

Discussion: Why Semi-Structured Data?
• Semi-structured data model is good as data 

exchange formats
– i.e., exchanging data between different apps
– Examples: XML, JSon, Protobuf (protocol buffers)

• Increasingly, systems use them as a data 
model for databases:
– SQL Server supports for XML-valued relations
– CouchBase, MongoDB: JSon as data model
– Dremel (BigQuery): Protobuf as data model
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Query Languages for 
Semi-Structured Data

• XML: XPath, XQuery (see textbook)
– Supported inside many RDBMS (SQL Server, DB2, Oracle)
– Several standalone XPath/XQuery engines

• Protobuf: SQL-ish language (Dremel) used internally 
by google, and externally in BigQuery

• JSon:
– CouchBase: N1QL
– Asterix: SQL++ (based on SQL)
– MongoDB: has a pattern-based language
– JSONiq http://www.jsoniq.org/
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• AsterixDB
– No-SQL database system
– Developed at UC Irvine
– Now an Apache project, being incorporated into 

CouchDB (another No-SQL DB)

• Uses Json as data model
• Query language: SQL++

– SQL-like syntax for Json data
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They are 
hiring!

Asterix Data Model (ADM)
• Based on the Json standard
• Objects:

– {“Name”: “Alice”, “age”: 40}
– Fields must be distinct:
{“Name”: “Alice”, “age”: 40, “age”:50}

• Ordered arrays:
– [1, 3, “Fred”, 2, 9]
– Can contain values of different types

• Multisets (aka bags):
– {{1, 3, “Fred”, 2, 9}}
– Mostly internal use only but can be used as inputs
– All multisets are converted into ordered arrays (in arbitrary 

order) when returned at the end 
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Can’t have
repeated fields
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Examples

What do these queries return?
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SELECT x.phone
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

SELECT x.phone
FROM {{ {"name": "Alice", "phone": [300, 150]} }} AS x;

-- error
SELECT x.phone
FROM {"name": "Alice", "phone": [300, 150]} AS x;

Can only query from
multi-set or array (not object)

http://www.jsoniq.org/
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Datatypes

• Boolean, integer, float (various precisions), 
geometry (point, line, …), date, time, etc

• UUID = universally unique identifier
Use it as a system-generated unique key
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null v.s. missing
• {"age": null} = the value NULL (like in SQL)
• {"age": missing} = { } = really missing

SELECT x.b
FROM [{"a":1, "b":2}, 

{"a":3, "b":null }] AS x;

{"b": 2}
{"b": null }Answer
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null v.s. missing
• {"age": null} = the value NULL (like in SQL)
• {"age": missing} = { } = really missing

SELECT x.b
FROM [{"a":1, "b":2}, 

{"a":3}] 
AS x;

{"b": 2}
{ }Answer
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SELECT x.b
FROM [{"a":1, "b":2}, 

{"a":3, "b":missing }] 
AS x;

{"b": 2}
{ }Answer

Finally, a language that we can use!
SELECT x.age
FROM Person AS x
WHERE x.age > 21
GROUP BY x.gender
HAVING x.salary > 10000
ORDER BY x.name;

FROM Person AS x
WHERE x.age > 21
GROUP BY x.gender
HAVING x.salary > 10000
SELECT x.age
ORDER BY x.name;

is exactly the same as

FWGHOS
lives!!
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SQL++ Overview

• Data Definition Language: create a
– Type
– Dataset (like a relation)
– Dataverse (a collection of datasets)
– Index

• For speeding up query execution

• Data Manipulation Language: 
SELECT-FROM-WHERE
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Dataverse
A Dataverse is a Database 
(i.e., collection of tables)

CREATE DATAVERSE myDB
CREATE DATAVERSE myDB IF NOT EXISTS

DROP DATAVERSE myDB
DROP DATAVERSE myDB IF EXISTS

USE myDB
25CSE 414 - Autumn 2018
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Closed Types
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USE myDB;

DROP TYPE PersonType IF EXISTS;

CREATE TYPE PersonType AS CLOSED {

name: string,

age: int,

email: string?

}

{"name": "Alice", "age": 30, "email": "a@alice.com"}

{"name": "Bob", "age": 40}

-- not OK:
{"name": "Carol", "phone": "123456789"}

Type

• Defines the schema of a collection
• It lists all required fields
• Fields followed by ? are optional

• CLOSED type = no other fields allowed
• OPEN type = other fields allowed
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Open Types
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{"name": "Alice", "age": 30, "email": "a@alice.com"}

{"name": "Bob", "age": 40}

-- now it’s OK:
{"name": "Carol", "age":20, "phone": "123456789"}

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {

name: string,
age: int,

email: string?
}

Types with Nested Collections
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USE myDB;

DROP TYPE PersonType IF EXISTS;

CREATE TYPE PersonType AS CLOSED {

Name : string,

phone: [string]

}

{"Name": "Carol", "phone": ["1234”]}
{"Name": "David", "phone": [“2345”, “6789”]}
{"Name": "Evan", "phone": []}
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Datasets

• Dataset = relation

• Must have a type
– Can be a trivial OPEN type

• Must have a key
– Can also be a trivial one
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Dataset with Existing Key
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USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

name: string,
email: string?

}

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

{“name”: “Alice”}
{“name”: “Bob”}
…
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Dataset with Auto Generated Key
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USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

myKey: uuid,
Name : string,
email: string?

}

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)

PRIMARY KEY myKey AUTOGENERATED;

Note: no myKey
inserted as it is
autogenerated

{“name”: “Alice”}
{“name”: “Bob”}
…

This is no longer 1NF
• NFNF = Non First Normal Form

• One or more attributes contain a collection

• One extreme: a single row with a huge, 
nested collection

• Better: multiple rows, reduced number of 
nested collections
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