Introduction to Database Systems
CSE 414

Lecture 1: Introduction

Class Goals

- The world is drowning in data!
- Need computer scientists to help manage this data
 - Help domain scientists achieve new discoveries
 - Help companies provide better services (e.g., Facebook)
 - Help governments (and universities!) become more efficient
- Welcome to 414: Introduction to Database Systems
 - Existing tools PLUS data management principles
 - This is not just a class on SQL!

Staff

- **Instructor:** Ryan Maas
 - Office hours T/Th 10:30 and by appointment
- **TA’s**
 - Andrew Wei
 - Kodiak Conrad
 - Rob Thompson
 - Joshua Bean
 - Daniel Lyu

Course Format

- **Lectures**
 - Location: here!
 - Please attend
- **Sections:**
 - Content: exercises, tutorials, questions, new materials (occasionally)
 - Locations: see web
 - Please attend
 - Bring your laptop
- 8 homework assignments
- 7 web quizzes
- Midterm and final
- Class and section participation
 - Post and answer questions (in class, piazza, etc)

Grading

- **Homeworks** 30%
- **Web quizzes** 10%
- **Midterm** 20%
- **Final** 30%
- **Class participation** 10%

- This is all subject to change

Communications

 - Syllabus (course information)
 - Schedule: add to your calendar
 - Lecture/section notes will be available there
 - Homework assignments will be available there
 - Link to web quizzes is there
- **Piazza**
 - Sign up:
 - THE place to ask course-related questions
 - Log in today and enable notifications
Textbook
Main textbook, available at the bookstore:

 Second edition.

REQUIRED READING!

Other Texts
Available at the Engineering Library (some on reserve):

- *Database Management Systems*, Ramakrishnan
- *Fundamentals of Database Systems*, Elmasri, Navathe
- *Foundations of Databases*, Abiteboul, Hull, Vianu
- *Data on the Web*, Abiteboul, Buneman, Suciu

Prerequisites
Formally: CSE143: Computer Programming II

Assume knowledge of:
- Java programming
- Basic data structures (lists, trees, objects)
- Unix (command line tools)

Eight Homework Assignments
H1: SQL+sqlite intro (1 week)
H2: SQL basics (1 week)
H3: Advanced SQL on Azure (1+ weeks)
H4: Datalog and Relational Algebra (1+ weeks)
H5: NoSQL: Json/SQL++ (1 week)
H6: Spark on AWS (1+ weeks)
H7: Schema Design (1 week)
H8: Transactional Application (1+ weeks)

About the Assignments
- You will learn/practice the course material:
 - SQL, RA, parallel db, transactions, ...
- You will also learn lots of new technology
 - Cloud computing: Azure, and Amazon web services
 - NoSQL: AsterixDB, Spark
 - Databases: sqlite, Microsoft SQL Server
 - Git
- Each ranges in its difficulty to setup and use
- Will require (non-trivial) time to fiddle and explore!
- The time spent learning the new technology is very useful: write everything on your CV!

Deadlines and Late Days
- Assignments are expected to be done on time, but things happen, so…
- You have up to 4 late days
 - No more than 2 on any one assignment
 - Use in 24-hour chunks
- Late days = safety net, not convenience!
 - You should not plan on using them
 - If you use all 4 you are doing it wrong
Seven Web Quizzes

- http://newgradiance.com/
- Create account; please use the same ID as your UW ID
- Course token will be posted on piazza
- Short tests, take many times, best score counts
- No late days – closes at 11:59pm deadline
- Provide explanations for wrong answers

Exams

- Midterm (Nov. 1) and Final (Dec. 13)
- You may bring letter-size piece of paper with notes
 - May write on both sides
 - Midterm: 1 sheet, Final: 2 sheets
- Closed book. No computers, phones, watches,...
- Location: in class

Academic Integrity

- Anything you submit for credit is expected to be your own work
 - Of course OK to exchange ideas, but not detailed solutions
 - We all know difference between collaboration and cheating
 - Attempt to gain credit for work you did not do is misconduct
- We trust you implicitly, but will come down hard on any violations of that trust

Lecture Notes

- Will be available before class online
- Feel free to bring them to class to take notes

Using Electronics in Class

In the lectures:
- Opened laptops may disturb neighbors
- Please sit in the back if you take notes on laptop; pads / surfaces are OK
- Please don’t check your email / youtube / fb

In the sections:
- Always bring your laptop (starting Thursday)

Now onto the real stuff…
Outline of Today’s Lecture

• Overview of database management systems

• Course content

Database

What is a database?

• A collection of files storing related data

Give examples of databases

• Accounts database; payroll database; UW’s students database; Amazon’s products database; airline reservation database

Database Management System

What is a DBMS?

• A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMSs

– Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
– Open source: MySQL (Sun/Oracle), PostgreSQL, CouchDB
– Open source library: SQLite

We will focus on relational DBMSs most quarter

An Example: Online Bookseller

What data do we need?

– Data about books, customers, pending orders, order histories, trends, preferences, etc.
– Data about sessions (clicks, pages, searches)
– Note: data must be persistent! Outlook application
– Also note that data is large… won’t fit all in memory

What capabilities on the data do we need?

– Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
– Data must be accessed efficiently, by many users
– Data must be safe from failures and malicious users
Challenges for a DBMS

Alice and Bob receive a $200 gift certificate as wedding gift

Alice @ her office orders
“The Art of Computer Programming”
$80

Bob @ home orders
“Guitar For Dummies”
$100

Questions:
What is the ending credit?
What if second book costs $130?
What if system crashes?

Lesson: a DBMS needs to handle various scenarios

What a DBMS Does

- Describe real-world entities in terms of stored data
- Persistently store large datasets
- Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters
- Change structure (e.g., add attributes)
- Concurrency control: enable simultaneous updates
- Crash recovery
- Security and integrity

The players

- **DB application developer**: writes programs that query and modify data (CSE414)
- **DB designer**: establishes schema (CSE414)
- **DB administrator**: loads data, tunes system, keeps whole thing running (CSE414, 444)
- **Data analyst**: data mining, data integration (CSE414, 446, CSED 516)
- **DBMS implementor**: builds the DBMS (CSE444)
- **Research on new systems**: (CSE544)
What is this class about?

- **Data models**
 - Relational: SQL and Datalog
 - NoSQL: SQL++
- **RDBMS internals**
 - Relational algebra
 - Query optimization and physical design
- **Parallel query processing**
 - Spark and Hadoop
- **Conceptual design**
 - E/R diagrams
 - Schema normalization
- **Transactions**
 - Locking and schedules
 - Writing DB applications

What to Do Now

 - Homework 1 is posted
 - Simple queries in SQL Lite
 - Due on Tuesday, 10/3
 - Webquiz 1 is open
 - Create account at http://newgradiance.com/
 - Sign up for class online
 - Due on Friday, 10/6
 - First sections on Thursday
 - Tutorial on git and SQLite
 - Post on Piazza if you have questions about HW and lecture