
Hint1 Record type, OrderedList type, UnorderedList type
https://asterixdb.apache.org/docs/0.8.8-incubating/aql/datamodel.html#DerivedTypes

Record type, denoted by {…}
OrderedList type, denoted by […]
UnorderedList type, denoted by {{…}}

Key:
For all the collections in FROM clause, the type should be either OrderedList, which is denoted 
by brackets: “[…]”, or UnorderedList, which is denoted by two opening flower braces: ”{{…}}”.

Example1:
SELECT y as country FROM world x, x.mondial.country y;

If we check the mondial.adm data file, search “country”, we will see that world.mondial.country 
is denoted by brackets”[…]”, so it is OrderedList type. We give “world.mondial.country” a name 
called y, actually the database system will make y to be a Record type, which we could think of 
a Record type as “tables” when we learn SQL, thus we actually create a “table” named y and by 
using y.name we could retrieve the information we want. We could also think of each object in 
the “world.mondial.country” OrderedList is a “record” in y “table”.

Example2:
SELECT z as country FROM world x, x.mondial y, y.country z;

We will get an error message for this query:
“Type mismatch: function scan-collection expects its 1st input parameter to be type orderedlist 
or unorderedlist, but the actual input type is record [TypeMismatchException]” 

If we check the mondial.adm data file, search “mondial”, it is denoted by flower braces”{…}”, so 
it is a Record type, thus we will get a Type mismatch error since all the relations in FROME 
clause should be either OrderedList or UnorderedList type.

Hint2 Heterogenous Colletions
Test Queries4, 5 on http://courses.cs.washington.edu/courses/cse414/17sp/hw/hw5/hw5.html

Key:
We could use “CASE WHEN …END” to incorporate data with different types.

Example1:
SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z, z.city u;

We will get an error message:
“Type mismatch: function scan-collection expects its 1st input parameter to be type orderedlist 
or unorderedlist, but the actual input type is record [TypeMismatchException]” 

https://asterixdb.apache.org/docs/0.8.8-incubating/aql/datamodel.html#DerivedTypes


If we check world.mondial.country.province.city, it can be both denoted by brackets […] and 
single flower braces {…}, so it can either be an OrderdList type or a Record type, violating the 
rule that all the collections in FROME clause should be either OrderedList or UnorderedList 
type.

To solve this problem, we could use “CASE WHEN…END” to generate an OrderedList of the 
data we want, and then name it as a new record u:

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z, 
     (CASE WHEN is_array(z.city) THEN z.city 

     ELSE [z.city] END) u;

We could see that there are four records or “tables” x, y, z, u. Since they are in FROM clause, 
we need to make sure that world, world.mondial.country, world.mondial.country.province and the 
collections before u should all be OrderedList or UnorderedList type. 

If we check world.mondial.country.province.city(=z.city), it could be either denoted by brackets 
[…] or flower braces {…}, making it either be an OrderedList type and a Record type. So We 
split into different cases based on the type of z.city. If z.city is denoted by […](is_array(z.city) will 
return true), meaning that it is an OrderedList type, then just return z.city. Else if z.city is 
denoted by {…}, meaning that it is a Record type. Then we add an outer bracket […]  to that 
z.city so that we could change a Record type to an OrderedList type, then we can guarantee 
that “CASE WHEN …END” will return an OrderedList type.

Hint3 Nesting 
Test Queries6 on http://courses.cs.washington.edu/courses/cse414/17sp/hw/hw5/hw5.html

Key: 
Using “Let x = (subquery)” or “Let x = (CASE WHEN …END)”  to group all the information you 
want in a list.

Example1:
SELECT z.name as province_name, (SELECT u.name FROM cities u) as city_namelist
FROM world x, x.mondial.country y, y.province z
LET cities = CASE WHEN z.city is missing THEN []
                  WHEN is_array(z.city) THEN z.city
                  ELSE  [z.city] END;

If a province has multiple cities, the Test Query 5 will return results like:
{ "province_name": "Attiki", "city_name": "Athens" }
{ "province_name": "Attiki", "city_name": "Piraeus" }

However, if we want to nest our result based on some attribute, such as we want to nest 
city_name for each province:
{ "province_name": “Attiki”, "city_namelist": [ { "name": "Athens" }, { "name": "Piraeus" } ]}



We could use “Let x = (subquery)” or “Let x = (CASE WHEN …END)” to nest data, x will be an 
UnOrderedList type. In our case, cities will be an UnOrderedList of city name, this list is 
generate by the “CASE WHEN … END” clause. 

We could see that there are only three records x, y, z in the main query of Test Query 6, 
compared to Test Query 5, there are four records x, y, z, u.  “cities” is UnOrderedList type, if 
want to use “cities.name” to retrieve city name information, we will get an error message:
”Type mismatch: function field-access-by-name expects its 1st input parameter to be type 
record, but the actual input type is unorderedlist”.

Instead, we could just use “cities” or use a subquery“SELECT u.name FROM cities u” to retrieve 
information we want. As a notice, when we use “cities u”,  the system will make u as a Record 
type so that we could use u.name to retrieve city name information.

Hint4  Others

Key:
Add back quotes to some illegal attribute, such as `-car_code`.
Use multi-value join if there are multiple values for an attribute.
Make use of Functions such as is_array(), coll_count() etc.


