
A Peek Into the World of
Streaming

What’s Streaming?

 Data
Stream
processing
engine

Summarized data

What’s Streaming?

 Data
Stream
processing
engine

Summarized data

Data
storage

Funny thing: Streaming in practice often started on
disk!

 Data
Stream
processing
engine

Summarized data

Data
storage

Data
storage

Outline
● Motivate streaming applications
● Apache Spark Streaming
● Dataflow/Apache Beam and Watermarks
● Apache Spark Structured Streaming and Watermarks.

Counting hashtags: batch
Input:

Timestamped twitter messages, some of them with hash tags.

Output:

For each five-minute window, the top ten hashtags along with their counts.

10:01 “I love cats #cats”
10:04 “My cat just ate a bug, gross. #cats”
10:06 “My cat is so cute! #cats” 10:00-10:05 #cats 2

10:05-10:10 #cats 1

Counting hashtags: batch, cont
● Compute the time interval the tweet falls into (eg, 10:00-10:05, or

10:05-10:10)
● reduce by a key of time-interval,hashtag

Counting hashtags: streaming
Input:

Timestamped twitter messages, some of them with hash tags.

Output:

Output the top ten hashtags along with their counts.

10:01 “I love cats #cats”
10:04 “My cat just ate a bug, gross. #cats”
10:06 “My cat is so cute! #cats”

10:00-10:05 #cats 2

10:05-10:10 #cats 1

● Idea: divide input up into micro-batches

10:01 “I love cats #cats”
10:04 “My cat just ate a bug, gross. #cats”
10:06 “My cat is so cute! #cats”

For each batch, group by the hashtag (reduceBy in Apache Spark), and perform
the count. DONE.

Apache Spark Streaming

Batch 10:00-10:05

Batch 10:05-10:10

Apache Spark Streaming: Batch boundary does not
need to match aggregation boundary

10:01:30 “I love cats #cats”
10:01:55 “RT #cats are the best.”
10:02:12 “Dead mouse #cats”
10:03:52 “Live mouse. Wish I had a cat. #cat”
10:04:23 “My cat just ate a bug, gross. #cats”
10:04:44 “My #cat had kittens!”
10:06 “My cat is so cute! #cats”

● Aggregate by batches and sum over five batches.

10:01

10:03

10:04

10:02

Dataflow/Apache Beam
● Data is in a PCollection
● Programmer provides transformations on the PCollection
● Helpers for basics like groupBy
● When done, Run!

Pipeline myPipeline = Pipeline.create(options)
PCollection<String> inputdata = myPipeline.apply(/* read the data */) // Nothing
PCollection<String> foo =inputdata.apply(...).apply(...); // Nothing happens.
//… more stuff ...
myPipeline.run(); // Actually does something

Dataflow: Program vs execution may be different

Trim
string

To
lower
case

Group
By

● Dataflow program is given all operations “in advance” and may re-order
and rearrange

● Execution engine essentially “pluggable” because what is provided is a
program description.

● Program can be batch or streaming
● Uses a watermark in streaming applications

Back to Counting #cats
Or, why watermark is useful

What problems can arise here?

 Data Do
aggregation

#cat counts

 Data

Counting hashtags: real world
Data as seen by the stream processor:

10:01 “I love cats #cats”
10:06 “My cat is so cute! #cats”
10:04 “My cat just ate a bug, gross. #cats”

Really common!

Question: What’s the count for 10:00-10:05? When do we output it?
10:00-10:05 #cats ?

10:05-10:10 #cats ?

Counting hashtags: real world
Data as seen by the stream processor:

10:01 “I love cats #cats”
10:06 “My cat is so cute! #cats”
10:04 “My cat just ate a bug, gross. #cats”

Really common!

Question: What’s the count for 10:00-10:05? When do we output it?
10:00-10:05 #cats 2

10:00-10:05 #cats 1

Counting hashtags: real world
Case 1:

10:01 “I love cats #cats”
10:06 “My cat is so cute! #cats”
10:04 “My cat just ate a bug, gross. #cats”

Case 2:
10:01 “I love cats #cats”
10:06 “My cat is so cute! #cats”
… three hours later ...
10:04 “My cat just ate a bug, gross. #cats”

Question: What’s the count for 10:00-10:05? When do we output it?

What to do with out-of-order data?

What to do with out-of-order data?
● Discard anything earlier than what’s already been seen

○ One early data item, and you miss a lot!
○ You could miss an entire slow-to-arrive source!

● When nothing from 10:00-10:05 has been seen for x minutes
● Depends on data input source

○ Maybe the source has some idea of how out-of-order data can be

● Special business logic:
○ When fewer than x things seen and ….

Question: How do we program this?

Watermark: Data is complete up until this point
● Watermark is X → all data earlier than X has arrived
● In our example: Watermark is 10:05 → all data up until 10:05 has arrived →

we can output the #cat count
● Doneness for a Stream!
● Refinement 1: Early outputs
● Refinement 2: Late data treatment: drop it all, allow it all, drop it if later than

some time.

Dataflow with watermarks
● Runtime tracks the watermark (with potential source-specific logical)
● API provides way to specify whether and when to output before watermark is

reached
● API provides way to specify whether and when to output after watermark is

reached

To see how much of a difference that can make:
https://cloud.google.com/dataflow/blog/dataflow-beam-and-spark-comparison
(google spark vs dataflow)

Apache Spark 2.0 structured streaming
Incorporates idea of a watermark. It maintains a table of output results, and
updates them as data is processed.

10:01 “I love cats #cats”
10:06 “My cat is so cute! #cats”

10:00-10:05 #cats 1

10:05-10:10 #cats 1

Apache Spark 2.0 structured streaming
Incorporates idea of a watermark. It maintains a table of output results, and
updates them as data is processed.

10:01 “I love cats #cats”
10:06 “My cat is so cute! #cats”
10:04 “My cat just ate a bug, gross. #cats”

10:00-10:05 #cats 2

10:05-10:10 #cats 1

Questions?

