Database Systems CSE 414

Lecture 25: MapReduce

CSE 414 - Spring 2017

1

Announcements

- HW7 due tonight
- HW8 (Spark): will be posted shortly
 - Section tomorrow on setting up Spark on AWS
 - Create your AWS account before arriving
 - Follow the first part of the Spark setup instructions ("Setting up an AWS account") to get credits for free use
 - <u>https://courses.cs.washington.edu/courses/cse414/17sp/spark/spark-setup.html</u>
 - note that this **may take a while** to process
 - Remember to terminate cluster when not in use!!!
 Otherwise you will be charged lots of \$\$\$\$
 CSE 414 Spring 2017

Optional Reading

- Original paper: <u>https://www.usenix.org/legacy/events/osdi04/t</u> <u>ech/dean.html</u>
- Rebuttal to a comparison with parallel DBs: <u>http://dl.acm.org/citation.cfm?doid=1629175.1</u> 629198
- Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman <u>http://i.stanford.edu/~ullman/mmds.html</u>

Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file is partitioned into *chunks*, typically 64MB
- Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google's DFS: GFS, proprietary
 - Hadoop's DFS: HDFS, open source

MapReduce

- Google: paper published 2004
- Free variant: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing

MapReduce Process

- Read a lot of data (records)
- Map: extract info you want from each record
- Shuffle and Sort
 Looks familiar...
- Reduce: aggregate, summarize, filter, transform
- Write the results

Paradigm stays the same, change map and reduce functions for different problems

Data Model

Files!

A file = a bag of (key, value) pairs

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Ouput:
 bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file

Step 2: the **REDUCE** Phase

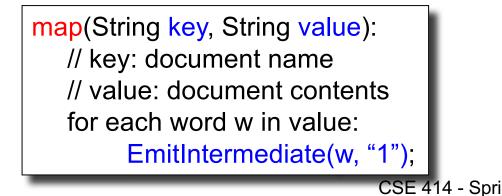
User provides the **REDUCE** function:

- Input: (intermediate key, bag of values)
- Output: bag of output (key, value) pairs

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example

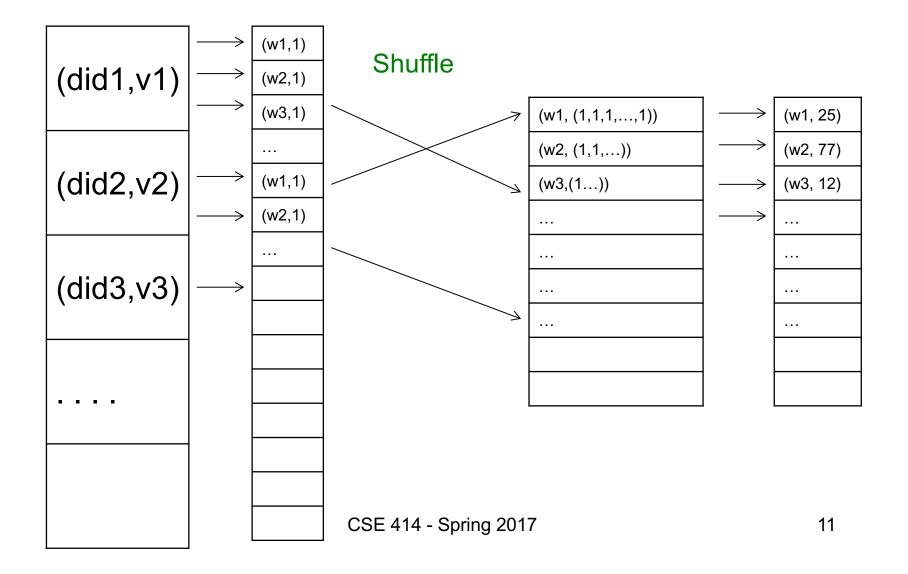
- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)



reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += 1;
 Emit(key, AsString(result));

MAP

REDUCE



Jobs & Tasks

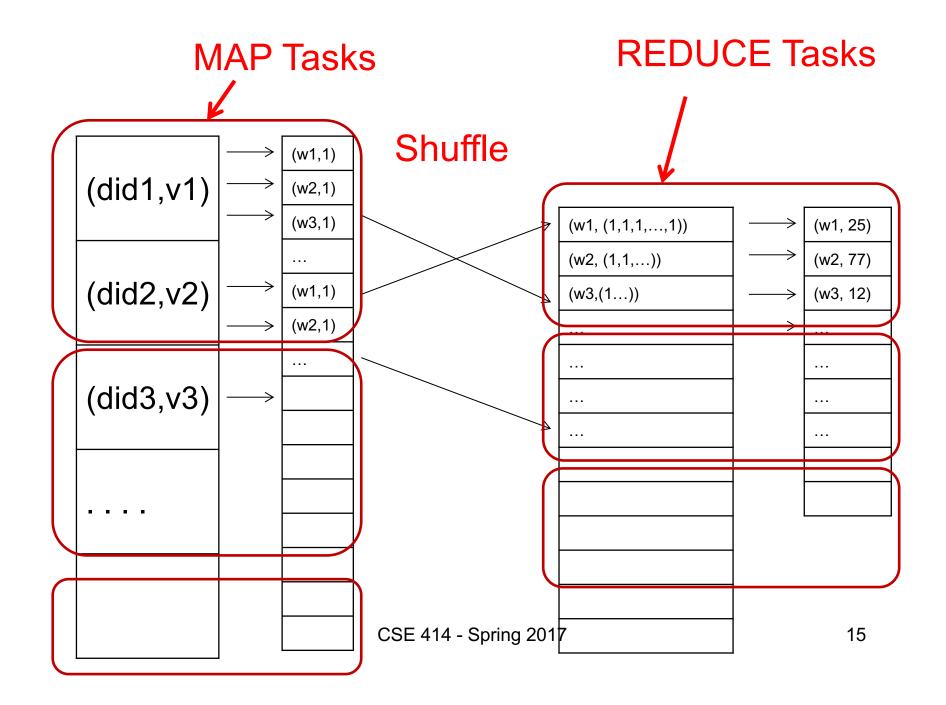
- A MapReduce Job
 - One single "query", e.g. count the words in all docs
 - More complex queries may consists of multiple jobs
- A Map <u>Task</u>, or a Reduce <u>Task</u>
 - A group of instantiations of the map-, or reducefunction, which are scheduled on a single worker

Workers

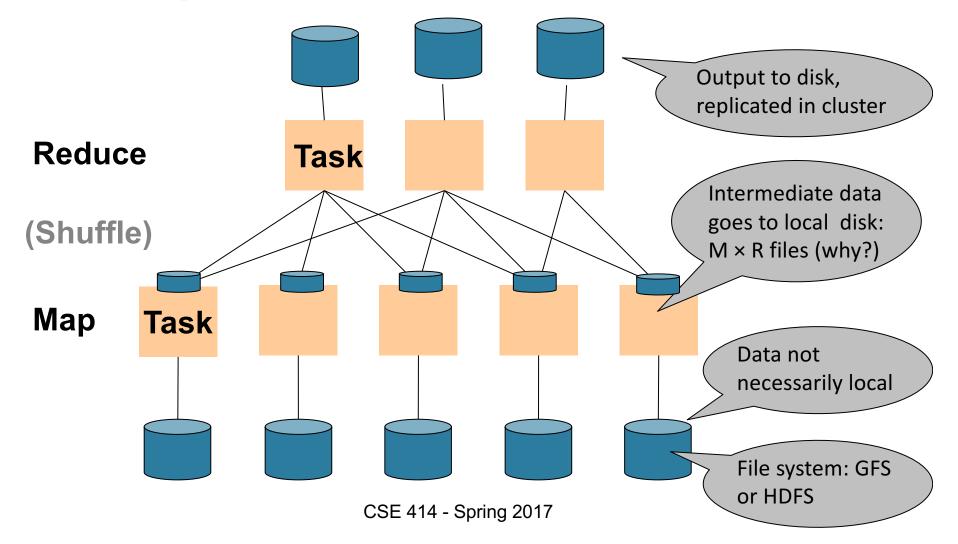
- A worker is a process that executes one task at a time
- Typically there is one worker per processor, hence 4 or 8 per node

Fault Tolerance

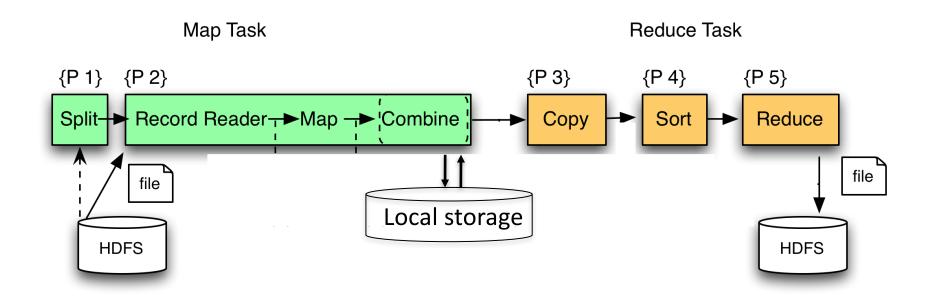
- If one server fails once every year...
 ... then a job with 10,000 servers will fail in less than one hour
- MapReduce handles fault tolerance by writing intermediate files to disk:
 - Mappers write file to local disk
 - Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server



MapReduce Execution Details



MapReduce Phases



Implementation

- There is one master node
- Master partitions input file into *M* splits, by key
- Master assigns *workers* (=servers) to the *M map* tasks, keeps track of their progress
- Workers write their output to local disk, partition into *R regions*
- Master assigns workers to the *R* reduce tasks
- Reduce workers read regions from the map workers' local disks

Interesting Implementation Details

Worker failure:

- Master pings workers periodically,
- If down, then reassigns the task to another worker

Interesting Implementation Details

Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks. Eg:
 - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Issues with MapReduce

- Difficult to write more complex queries
- Need multiple MapReduce jobs: dramatically slows down because it writes all results to disk

more recent systems work in memory

• Next lecture: Spark

Relational Operators in MapReduce

Given relations R(A,B) and S(B, C) compute:

- Selection: $\sigma_{A=123}(R)$
- Group-by: $\gamma_{A,sum(B)}(R)$
- Join: R [⋈] S

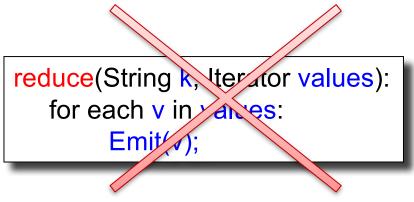
Selection $\sigma_{A=123}(R)$

map(String value):
if value.A = 123:

EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
 Emit(v);

map(String value):
 if value.A = 123:
 EmitIntermediate(value.key, value);



No need for reduce. But need system hacking to remove reduce from MapReduce

Group By $\gamma_{A,sum(B)}(R)$

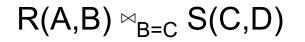
map(String value):
 EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
 s = 0
 for each v in values:
 s = s + v
 Emit(k, s);

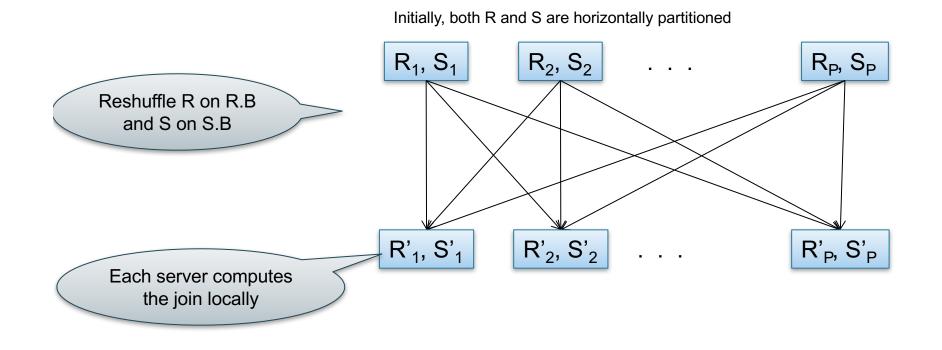
Join

Two simple parallel join algorithms:

- Partitioned hash-join
- Broadcast join

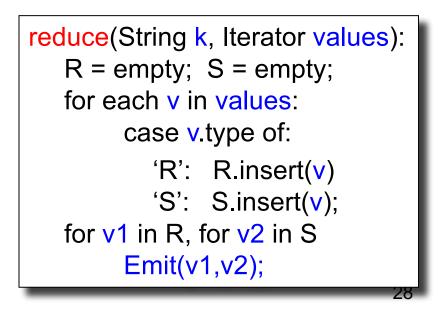


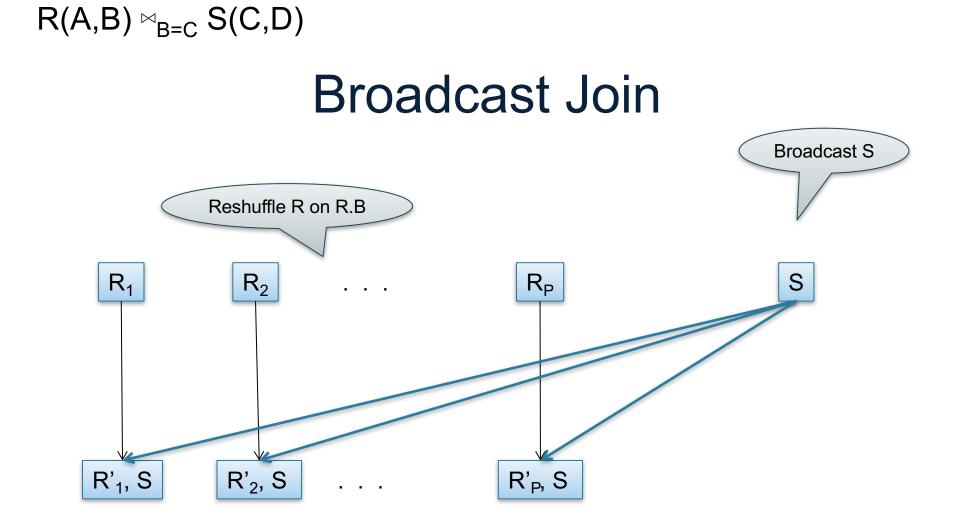
Partitioned Hash-Join

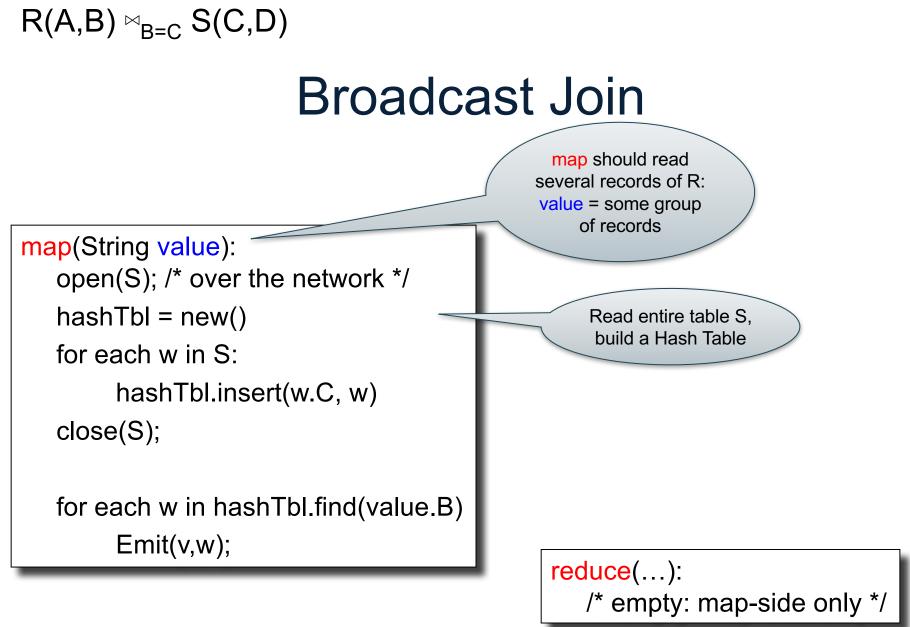


$R(A,B) \bowtie_{B=C} S(C,D)$

Partitioned Hash-Join







Conclusions

- MapReduce offers a simple abstraction, and handles distribution + fault tolerance
- Speedup/scaleup achieved by allocating dynamically map tasks and reduce tasks to available server. However, skew is possible (e.g. one huge reduce task)
- Writing intermediate results to disk is necessary for fault tolerance, but very slow.
 Spark replaces this with "Resilient Distributed Datasets" = main memory + lineage

Conclusions II

- Widely used in industry
 - Google Search, machine learning, etc.
 - looks good on a resume
- Has been generalized (see Google DataFlow)
- Harder to use than necessary
 - language is imperative not declarative (i.e., you have to actually write code)