Database Systems
CSE 414

Lectures 23: Parallel Databases

CSE 414 - Spring 2017

Announcement

« WQY7 due tonight
— (was due yesterday)

« HWY7 due on Wednesday

« HW8 (last!) on Spark
— will be posted later this week

Why compute in parallel?

* Multi-cores:
— Most processors have multiple cores
— This trend will increase in the future

» Big data: too large to fit in main memory
— Distributed query processing on 100-1000 servers
— Widely available now using cloud services

Big Data

« Companies, organizations, scientists have
data that is too big (and sometimes too
complex) to be managed without changing
tools and processes

« Complex data processing:
— Decision support queries (SQL w/ aggregates)
— Machine learning (adds linear algebra and iteration)

Two Kinds to Parallel Data
Processing

» Parallel databases, developed starting
with the 80s (this lecture)

— OLTP (Online Transaction Processing)

— OLAP (Online Analytic Processing, or
Decision Support)

» General purpose distributed processing:
MapReduce, Spark

— Mostly for Decision Support Queries

CSE 414 - Spring 2017

Performance Metrics
for Parallel DBMSs

P = the number of nodes (processors, computers)
« Speedup:
— More nodes, same data =» higher speed

« Scaleup:
— More nodes, more data = same speed

« OLTP: "Speed” = transactions per second (TPS)
« Decision Support: “Speed” = query time

Linear v.s. Non-linear Speedup

Speedup

\c\"’a\

Linear v.s. Non-linear Scaleup

Batch
Scaleup

|deal

| | |
nodes (=P) AND data size

Challenges to
Linear Speedup and Scaleup

o Startup cost
— Cost of starting an operation on many nodes

e |Interference
— Contention for resources between nodes

» Stragglers
— Slowest node becomes the bottleneck

CSE 414 - Spring 2017

Architectures for Parallel
Databases

* Shared memory

 Shared disk

» Shared nothing

Shared Memory

990

Interconnectlon Network

Global Shared Memory

o o o

CSE 414 - Spring 2017 11

Shared Disk

M M
[Interconneotion Network}

o D

CSE 414 - Spring 2017

(v =

)

Shared Nothing

Interconnectlon Network

e

@

® ©

ﬁi

CSE 414 - Spring 2017 13

A Professional Picture...

Figure 1 - Types of database architecture

ISII.M-DBI(s.ﬁ._g Onchm! I |8lllnd-lloﬂ|l§ ‘ﬂ. Gg llm! I

Network IIII

HEEE jll l!! !l l! !I &

| | i I | |

0 & -3 .
-\ e ',, ,,,._’A‘_l,_‘: _-‘_,_"_ -

SAN / Shared
Disk

From: Greenplum (now EMC) Database Whitepaper

SAN = “Storage Area Network”

CSE 414 - Spring 2017 14

Shared Memory

* Nodes share both RAM and disk
* Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

« Easier to program and easy to use

« But very expensive to scale: last remaining
cash cows in the hardware industry

Shared Disk

 All nodes access the same disks

* Found in the largest "single-box" (non-
cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

* Also hard to scale past a certain point:
existing deployments typically have fewer
than 10 machines

Shared Nothing

» Cluster of machines on high-speed network

« Each machine has its own memory and disk:
— lowest contention

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
« Today, this is the most scalable architecture.
 Most difficult to administer and tune.

[We discuss only Shared Nothing in class}

Approaches to

Parallel Query Evaluation = .

* Inter-query parallelism

— Transaction per node
— OLTP

* Inter-operator parallelism

— Operator per node
— Both OLTP and Decision Support

 Intra-operator parallelism
— Operator on multiple nodes
— Decision Support

<id=cid
cid=cid

Product Purchase

[We study only intra-operator parallelism

: most scalable}

Single Node Query Processing

(Review)
Given relations R(A,B) and S(B, C), no indexes:

« Selection: 0a-1,3(R)
— Scan file R, select records with A=123

* Group—by: VA,sum(B)(R)
— Scan file R, insert into a hash table using attr. A as key
— When a new key is equal to an existing one, add B to the value

« Join: R™S
— Scan file S, insert into a hash table using attr. B as key
— Scan file R, probe the hash table using attr. B

Distributed Query Processing

« Data is horizontally partitioned across
many servers

» Operators may require data reshuffling
— not all the needed data is in one place

Data:

Horizontal Data Partitioning

Servers:

1

=
| >

CSE 414 - Spring 2017

21

Horizontal Data Partitioning

Data:
K|A|B
N
J
2
4

Servers:

K A B

|1

Which tuples
go to what server?

CSE 414 - Spring 2017

22

Horizontal Data Partitioning

» Block Partition:
— Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

* Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

* Range partitioned on attribute A:
— Partition the range of Ainto -© =vy<v, < ... <yp=
— Tuple t goes to chunk i, if v, <t A<,

Parallel GroupBy

Data: R(K,A,B,C)
Query: Ya sum(c)(R)

How can we compute in each case?

* R is hash-partitioned on A casy case!
* R is block-partitioned

* R is hash-partitioned on K

Parallel GroupBy

Data: R(K,A,B,C)

Query: Ya sum(c)(R)
* R is block-partitioned or hash-partitioned on K

R, R, e Rp
Reshuffle R
on attribute A

R1’ R2’ Rpi

CSE 414 - Spring 2017 25

Parallel Join

- Data: R(K1,A, B), S(K2, B, C)
* Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, 82 e Rp, Sp

Reshuffle R on R.B
and Son S.B

r R’1, S,1 R,Z, 8’2 - e . R’P, S’P
Each server computes
the join locally

CSE 414 - Spring 2017

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) =~ S(K2,B,C)

Partition

Shuffle

Local
Join

R1 S1 R2 S2

K1 B K2 B K1 B K2 B
1 20 101 |50 3 20 201 |20
2 50 102 |50 4 20 202 |50

M1 M2

R1’ S1’ R2’ S2’

K1 B K2 B K1 B K2 B
1 20 >q(201 |20 2 50 >11101 |50
3 20 102 |50
4 20 M1 M2 | 202 |50

CSE 414 - Spring 2017

27

Speedup and Scaleup

 Consider:

— Query: Ya sumc)(R)
— Runtime: dominated by reading chunks from disk

* |f we double the number of nodes P, what is
the new running time?

— Half (each server holds %2 as many chunks)

* |f we double both P and the size of R, what is
the new running time?

— Same (each server holds the same # of chunks)

CSE 414 - Spring 2017 28

Uniform Data v.s. Skewed Data

» Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition Uniform
¢ HaSh-partlthn Assuminggood
Uniform hash function
_ On the key K E.g. when all records

. have the same value
— On the attrl bute A May be skewed of the attribute A, then
all records end up in the

same partition

Loading Data into a Parallel DBMS

Example using Teradata System
A Customer Row is Inserted—l

1. A Hash Bucket

/Hashmg AI orithm produces
2. A Hash-ID

Need to figure out
where it belongs...

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSE 414 - Spring 2017 30

Order(oid, pid, date), Product(pid, ...)

Example Parallel Query Execution

Find all orders from today, along with the items ordered

SELECT *
FROM Order o,
WHERE o.pid =
AND o.date =

Product p

p.pid
today ()

0.pid = p.pid

date = today()

CSE 414 - Spring 2017 31

Order(oid, pid, date), Product(pid, . e ™
Example Parallel
date = today()
Query Execution O @ o
AMP 1 AMP 2 AMP 3
hash hash hash
| h(o.pid) | h(o.pid) h(o.pid)
select select select
<%:eztocjay() <%:e=1:0d8y() C?ateztoday()
scan scan scan
Order o Order o Order o

AMP 1 AMP 2 AMP 3

Order(oid, pid, date), Product(pid, ...)

Example Parallel
Query Execution

AMP 1

ha

sh

Scan

h(p.pid)

Product p

AMP 1

AMP 2

hash

h(p.pid)

scan
Product p

AMP 2

~

o.pid = p.pid

AMP 3

hash

h(p.pid)

scan
Product p

AMP 3

Order(oid, pid, date), Product(pid, ...)

Example Parallel Query Execution

0.pid = p.pid 0.pid = p.pid 0.pid = p.pid

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(pid) = 3

contains all orders and all
lines where hash(pid) = 2

contains all orders and all
lines where hash(pid) = 1

CSE 414 - Spring 2017 34

