
5/17/17

1

Database Systems
CSE 414

Lecture 21: More Transactions
(Ch 8.1-3)

CSE 414 - Spring 2017 1

Announcements

• HW6 due on Today

• WQ7 (last!) due on Sunday

• HW7 will be posted tomorrow
– due on Wed, May 24
– using JDBC to execute SQL from Java
– using SQL Server via Azure
– setup covered in section tomorrow

CSE 414 - Spring 2017 2

Outline

• Serial and Serializable Schedules (18.1)

• Conflict Serializability (18.2)

• Locks (18.3)

CSE 414 - Spring 2017 3 4

Review: Transactions
• Problem: An application must perform several

writes and reads to the database, as a unit

• Solution: multiple actions of the application are
bundled into one unit called a Transaction

• Turing awards to database researchers
– Charles Bachman 1973 for CODASYL
– Edgar Codd 1981 for relational databases
– Jim Gray 1998 for transactions

CSE 414 - Spring 2017

Review: TXNs in SQL

CSE 414 - Spring 2017 5

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction
6

Review: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database
CSE 414 - Spring 2017

5/17/17

2

Isolation: The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How can we prevent unwanted interference ?
• The SCHEDULER is responsible for that

CSE 414 - Spring 2017 7

Notation says nothing about tables…
(These techniques apply more generally.)

Schedules

CSE 414 - Spring 2017 8

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Fact: nothing can go wrong if the system executes
transactions serially
– But database systems don’t do that because we need

better performance

9CSE 414 - Spring 2017

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 414 - Spring 2017 10

A and B are elements
in the database

t and s are variables
in txn source code

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Spring 2017 11

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Spring 2017 12

Ti
m

e

5/17/17

3

Serializable Schedule

CSE 414 - Spring 2017 13

A schedule is serializable if it is
equivalent to some serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 414 - Spring 2017 14

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Spring 2017 15

How do We Know if a Schedule
is Serializable?

CSE 414 - Spring 2017 16

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSE 414 - Spring 2017 17

Conflict Serializability

Conflicts: (it means: cannot be swapped)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 414 - Spring 2017 18

5/17/17

4

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swaps of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable
• A serializable schedule may not necessarily be

conflict-serializable

CSE 414 - Spring 2017 19

Conflict Serializability

CSE 414 - Spring 2017 20

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2017 21

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2017 22

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2017 23

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is serializable iff the precedence
graph is acyclic

CSE 414 - Spring 2017 24

5/17/17

5

Example 1

CSE 414 - Spring 2017 25

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 414 - Spring 2017 26

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 414 - Spring 2017 27

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 414 - Spring 2017 28

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Scheduler

• Scheduler = is the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSE 414 - Spring 2017 29

Implementing a Scheduler

Major differences between database vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2, Spanner

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle, Spanner

We discuss only locking in 414
30CSE 414 - Spring 2017

5/17/17

6

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If the lock is taken by another transaction,

then wait
• The transaction must release the lock(s)

CSE 414 - Spring 2017 31By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSE 414 - Spring 2017 32

Let’s Study SQLite First

• SQLite is very simple
• More info: http://www.sqlite.org/atomiccommit.html

• Lock types
– READ LOCK (to read)
– RESERVED LOCK (to write)
– PENDING LOCK (wants to commit)
– EXCLUSIVE LOCK (to commit)

CSE 414 - Spring 2017 33

SQLite

Step 1: when a transaction begins

• Acquire a READ LOCK (aka "SHARED" lock)
• All these transactions may read happily
• They all read data from the database file
• If the transaction commits without writing

anything, then it simply releases the lock

CSE 414 - Spring 2017 34

SQLite

Step 2: when one transaction wants to write
• Acquire a RESERVED LOCK
• May coexists with many READ LOCKs
• Writer TXN may write; these updates are only

in main memory; others don't see the updates
• Reader TXN continue to read from the file
• New readers accepted
• No other TXN is allowed a RESERVED LOCK

CSE 414 - Spring 2017 35

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks
• Acquire a PENDING LOCK
• May coexists with old READ LOCKs
• No new READ LOCKS are accepted
• Wait for all read locks to be released

CSE 414 - Spring 2017 36

Why not write
to disk right now?

5/17/17

7

SQLite

Step 4: when all read locks have been released
• Acquire the EXCLUSIVE LOCK
• Nobody can touch the database now
• All updates are written permanently to the

database file

• Release the lock and COMMIT

CSE 414 - Spring 2017 37

SQLite

CSE 414 - Spring 2017 38

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

SQLite Demo

create table R(a int, b int);
insert into R values (1,10);
insert into R values (2,20);
insert into R values (3,30);

CSE 414 - Spring 2017 39

Demonstrating Locking in SQLite

T1:
begin transaction;
select * from R;
-- T1 has a READ LOCK

T2:
begin transaction;
select * from R;
-- T2 has a READ LOCK

CSE 414 - Spring 2017 40

Demonstrating Locking in SQLite

T1:
update R set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:
update R set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

CSE 414 - Spring 2017 41

Demonstrating Locking in SQLite

T3:
begin transaction;
select * from R;
commit;
-- everything works fine, could obtain READ LOCK

CSE 414 - Spring 2017 42

5/17/17

8

Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 414 - Spring 2017 43

Demonstrating Locking in SQLite

T3':
begin transaction;
select * from R;
-- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
commit;
-- releases the last READ LOCK; T1 can commit

CSE 414 - Spring 2017 44

