
5/15/17

1

Database Systems
CSE 414

Lecture 20: Introduction to Transactions

CSE 414 - Spring 2017 1

Announcements

• HW6 due on Wednesday

• WQ6 available for one more day
• WQ7 (last one!) due on Sunday

CSE 414 - Spring 2017 2

Data Management Pipeline

Conceptual Schema

Physical Schema

Schema
designer

Database
administrator

Application
programmer

product

name

price

3

Demo
(see lec20-transactions-intro.sql)

CSE 414 - Spring 2017 4

Challenges

• Want to execute many apps concurrently
– All these apps read and write data to the same DB

• Simple solution: only serve one app at a time
– What’s the problem?

• Better: multiple operations need to be
executed atomically over the DB

CSE 414 - Spring 2017 5

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read aka
WRITE-READ conflict

CSE 414 - Spring 2017 6

5/15/17

2

What can go wrong?
• App 1:

SELECT inventory FROM products WHERE pid = 1

• App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read aka
READ-WRITE conflict

CSE 414 - Spring 2017 7

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 414 - Spring 2017 8

What can go wrong?
• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address
– Put in debit card number
– Click submit
– Screen shows money deducted from your account
– [Your browser crashes]

CSE 414 - Spring 2017 9

Changes to the database
should be ALL or NOTHING

Transactions

• Collection of statements that are executed
atomically (logically speaking)

10

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction
CSE 414 - Spring 2017

Transactions Demo
(see lec20-transactions-intro.sql)

CSE 414 - Spring 2017 11

Serial execution

• Definition: A SERIAL execution of
transactions is one where each transaction is
executed one after another.

• Fact: Nothing can go wrong if the DB
executes transactions serially.

• Definition: A SERIALIZABLE execution of
transactions is one that is equivalent to a
serial execution

CSE 414 - Spring 2017 12

5/15/17

3

13

ACID Transactions
• Atomic

– State shows either all the effects of txn, or none of them
• Consistent

– Txn moves from a state where integrity holds, to
another where integrity holds

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

CSE 414 - Spring 2017

Atomic
• Definition: A transaction is ATOMIC if all

its updates must happen or not at all.
• Example: move $100 from A to B

UPDATE accounts SET bal = bal – 100
WHERE acct = A;
UPDATE accounts SET bal = bal + 100
WHERE acct = B;

BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;
COMMIT;

Crash!

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

• Example: Alice deposits $100, Bob
withdraws $100 from account
BEGIN TRANSACTION;
x = select bal from accounts

where acct = A;
x = x+100
update accounts

set bal = x where acct = A;
COMMIT;

BEGIN TRANSACTION;
y = select bal from accounts

where acct = A;
if y < 100 return “Error”
y = y - 100
update accounts

set bal = y where acct = A;
COMMIT;

Alice: Bob:

Consistent
• Recall: integrity constraints govern how values in

tables are related to each other
– Example: account.bal >= 0
– Example: foreign key constraints

• Can be enforced by the DBMS or by the app

• How consistency is achieved by the app:
– App programmer ensures that txns only takes a

consistent DB state to another consistent state
– DB makes sure that txns are executed atomically

• Can defer checking the validity of constraints
until the end of a transaction

Durable

• A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

• How? By writing to disk
– (often multiple disks since individual disks fail)

CSE 414 - Spring 2017 17

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

CSE 414 - Spring 2017 18

5/15/17

4

19

ACID
• Atomic
• Consistent
• Isolated
• Durable

• Enjoy this in HW7!

• Note: by default each statement is its own txn
– Exception: if auto-commit is off, then each statement

starts a new txn

CSE 414 - Spring 2017 20

Transactions

CSE 414 - Spring 2017

Jim Gray

• Inventor of ACID transactions, 2PL, data cubes, ...
• Joined Microsoft in 1995
• Won the Turing Award in 1998
• His book “Transaction Processing” is probably still

the best work on database implementation

