
1

Database Systems
CSE 414

Lecture 13: Datalog
(Ch 5.3–5.4)

CSE 414 - Spring 2017

Announcements
• HW3 is due Tomorrow

• WQ4 moved to Sunday
– it will be useful review for the midterm
– finish it early if you have time

• Midterm on Friday, April 28th, in class…

CSE 414 - Spring 2017 2

Midterm
• Content

– Lectures 1 through 13 (today / Wednesday)
– HW 1–3, WQ 1–4

• Closed book. No computers, phones, watches, etc.!

• Can bring one letter-sized piece of paper with notes, but…
– test will not be about memorization
– formulas provided for join algorithms & selectivity
– can ask me during test about anything you could look up

• Similar in format & content to CSE 414 16sp midterm
– CSE 344 tests include some things we did not cover

3

What is Datalog?

• Another query language for relational model
– Simple and elegant
– Initially designed for recursive queries
– Some companies use datalog for data analytics

• e.g. LogicBlox
– Increased interest due to recursive analytics

• We discuss only recursion-free or non-
recursive datalog and add negation

CSE 414 - Spring 2017 4

Datalog

• See book: 5.3 – 5.4

• See also: Query Language primer
– article by Dan Suciu
– covers relational calculus as well

CSE 414 - Spring 2017 5

Why Do We Learn Datalog?
• Datalog can be translated to SQL

– Helps to express complex queries…

CSE 414 - Spring 2017 6

CSE 414 - Spring 2017 7

SQL Query vs Datalog
(which would you rather write?)

DirectReports(eid, 0) :-
Employee(eid),
not Manages(_, eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level),
Manages(mid, eid)

Why Do We Learn Datalog?
• Datalog can be translated to SQL

– Helps to express complex queries

• Increase in datalog interest due to recursive analytics

• A query language that is closest to mathematical logic
– Good language to reason about query properties
– Can show that:
1. Non-recursive datalog & RA have equivalent power
2. Recursive datalog is strictly more powerful than RA
3. Extended RA & SQL92 is strictly more powerful than datalog

CSE 414 - Spring 2017 8

Some History
Early database history:
• 60s: network data models
• 70s: relational DBMSs
• 80s: OO-DBMSs

Ullman (1988) predicts KBMSs will
replace DBMSs as they replaced what
came before
• KBMS: knowledge-base
• combines data & logic (inferences)

CSE 414 - Spring 2017 9

Actually… relational
DBMSs still dominate

Datalog

We won’t run datalog in 414. Try out on you own:
• Download DLV (http://www.dlvsystem.com/dlv/)
• Run DLV on this file
• Can also try IRIS

(http://www.iris-reasoner.org/demo)

CSE 414 - Spring 2017 10

parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.

Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,‘1940’).

Find Movies made in 1940

CSE 414 - Spring 2017 11

Actor(pid, fname, lname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,‘1940’).

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

CSE 414 - Spring 2017 12

Actor(pid, fname, lname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,‘1940’).

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910
CSE 414 - Spring 2017 13

Actor(pid, fname, lname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,‘1940’).

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

14CSE 414 - Spring 2017

Actor(pid, fname, lname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Terminology

CSE 414 - Spring 2017 15

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

bodyhead

atom atom atom (aka subgoal)

f, l = head variables
x,y,z = existential variables

More Datalog Terminology

• Ri(argsi) is called an atom, or a relational predicate
• Ri(argsi) evaluates to true when relation Ri contains

the tuple described by argsi.
– Example: Actor(344759,‘Douglas’, ‘Fowley’) is true

• In addition to relational predicates, we can also have
arithmetic predicates
– Example: z=‘1940’.

CSE 414 - Spring 2017 16

Q(args) :- R1(args), R2(args), Book writes:
Q(args) :- R1(args) AND R2(args) AND

Semantics
• Meaning of a datalog rule = a logical statement !

CSE 414 - Spring 2017 17

Q1(y) :- Movie(x,y,z), z=‘1940’.

• Means:
– ∀x. ∀y. ∀z. [(Movie(x,y,z) and z=‘1940’) Þ Q1(y)]
– and Q1 is the smallest relation that has this property

• Note: logically equivalent to:
– ∀ y. [(∃x.∃ z. Movie(x,y,z) and z=‘1940’) Þ Q1(y)]
– That's why vars not in head are called "existential variables".

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog program

18

B0(x) :- Actor(x,'Kevin','Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
Q4(x) :- B0(x)
Q4(x) :- B1(x)
Q4(x) :- B2(x)

A datalog program is a collection of one or more rules
Each rule expresses the idea that, from certain combinations
of tuples in certain relations, we may infer that some other
tuple must be in some other relation or in the query answer
Example: Find all actors with Bacon number ≤ 2

Note: Q4 means the union of B0, B1, & B2

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Recursive Datalog

• In datalog, rules can be recursive

• We’ll focus on non-recursive datalog

CSE 414 - Spring 2017 19

Path(x, y) :- Edge(x, y).
Path(x, y) :- Path(x, z), Edge (z, y).

1

2

4

3

Edge encodes a graph
Path finds all paths

5

Datalog with negation

CSE 414 - Spring 2017 20

B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)

Find all actors who do not have a Bacon number < 2

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Safe Datalog Rules

U1(x,y) :- Movie(x,z,1994), y>1910

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
in some positive relational atom

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog vs Relational Algebra
• Every expression in standard relational algebra can

be expressed as a Datalog query

• But operations in the extended relational algebra
(grouping, aggregation, and sorting) have no
corresponding features in the version of datalog that
we discussed today

• Similarly, datalog can express recursion, which
relational algebra cannot

CSE 414 - Spring 2017 22

Datalog vs Relational Algebra

CSE 414 - Spring 2017 23

standard RA
extended

RA

datalog + neg
+ recursion

datalog + neg

grouping &
aggregation

RA to Datalog by Examples

Schema for our examples:

R(A,B,C)
S(D,E,F)
T(G,H)

CSE 414 - Spring 2017 24

RA to Datalog by Examples

Union R(A,B,C) ∪ S(D,E,F)

U(x,y,z) :- R(x,y,z)
U(x,y,z) :- S(x,y,z)

CSE 414 - Spring 2017 25

RA to Datalog by Examples

Intersection R(A,B,C) ∩ S(D,E,F)

I(x,y,z) :- R(x,y,z), S(x,y,z)

CSE 414 - Spring 2017 26

RA to Datalog by Examples

Selection: sx>100 and y=‘some string’ (R)
L(x,y,z) :- R(x,y,z), x > 100, y=‘some string’

Selection x>100 or y=‘some string’
L(x,y,z) :- R(x,y,z), x > 100
L(x,y,z) :- R(x,y,z), y=‘some string’

CSE 414 - Spring 2017 27

RA to Datalog by Examples

Equi-join: R ⨝R.A=S.D and R.B=S.E S

J(x,y,z,u,v,w) :- R(x,y,z), S(u,v,w), x=u, y=v

J(x,y,z,w) :- R(x,y,z), S(x,y,w)

CSE 414 - Spring 2017 28

RA to Datalog by Examples

Projection px(R)

P(x) :- R(x,y,z)

CSE 414 - Spring 2017 29

RA to Datalog by Examples

To express set difference R – S,
we add negation

D(x,y,z) :- R(x,y,z), not S(x,y,z)

CSE 414 - Spring 2017 30

Examples
R(A,B,C)
S(D,E,F)
T(G,H)

Translate: PA(sB=3 (R))
B(a,b,c) :- R(a,b,c), b=3
A(a) :- B(a,b,c)

CSE 414 - Spring 2017 31

Examples
R(A,B,C)
S(D,E,F)
T(G,H)

Translate: PA(sB=3 (R))
A(a) :- R(a,3,_)

Underscore used to denote an "anonymous variable”,
a variable that appears only once.

CSE 414 - Spring 2017 32

Examples
R(A,B,C)
S(D,E,F)
T(G,H)

Translate: PA(sB=3 (R) ⨝R.A=S.D sE=5 (S))
A(a) :- R(a,3,_), S(a,5,_)

CSE 414 - Spring 2017 33

More Examples

Find Joe's friends, and Joe's friends of friends.

CSE 414 - Spring 2017 34

A(x) :- Friend('Joe', x)
A(x) :- Friend('Joe', z), Friend(z, x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all of Joe's friends who do not have any
friends except for Joe:

CSE 414 - Spring 2017 35

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- Friend(y,x), y != ‘Joe’
A(x) :- JoeFriends(x), not NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all people such that all their enemies'
enemies are their friends

CSE 414 - Spring 2017 36

NonAns(x) :- Enemy(x,y),Enemy(y,z), not Friend(x,z)
A(x) :- Everyone(x), not NonAns(x)

Everyone(x) :- Friend(x,y)
Everyone(x) :- Friend(y,x)
Everyone(x) :- Enemy(x,y)
Everyone(x) :- Enemy(y,x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples
Find all persons x that have only friends all of whose
enemies are x's enemies.

CSE 414 - Spring 2017 37

NonAns(x) :- Friend(x,y), Enemy(y,z), not Enemy(x,z)
A(x) :- Everyone(x), not NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

NonAns(x) :- Friend(x,y), Enemy(y,z), not Enemy(x,z)
A(x) :- not NonAns(x)

what’s wrong with this?

Datalog Summary
• facts (extensional relations) and

rules (intensional relations)
– rules can use relations, arithmetic, union, intersect, …

• As with SQL, existential quantifiers are easier
– use negation to handle universal

• Everything expressible in RA is expressible in
non-recursive datalog and vice versa
– recursive datalog can express more than (extended) RA
– extended RA can express more than recursive datalog

CSE 414 - Spring 2017 38

Midterm Concept Review I
• relational data model

– set semantics vs bag semantics
– primary & secondary keys
– foreign keys
– schemas

• SQL
– CREATE TABLE
– SELECT-FROM-WHERE (SFW)
– joins: inner vs outer, natural
– group by & aggregation
– ordering
– CREATE INDEX

CSE 414 - Spring 2017 39

Midterm Concept Review II
• relational queries

– languages for writing them:
• standard relational algebra
• datalog (even without recursion)
• SQL (even without grouping / aggregation)

– monotone queries are a proper subset
– SFW queries (i.e., w/out subqueries) are monotone

CSE 414 - Spring 2017 40

Midterm Concept Review III
• types of indexes

– B+ tree vs hash
• hash indexes use at most 2 disk accesses
• B+ tree can be used for < predicates
• B+ tree index on (X,Y) also allows searching for X=a matches

– clustered vs non-clustered
• selectivity above 1-2% => not helped by non-clustered indexes

• cost-based query optimization
– consider choices over logical and physical query plans

• most important choice in latter is choice of join algoirthm
• those include nested loop, sorted merge, hash, and indexed joins

– primary goal of the optimizer is to avoid really bad plans

CSE 414 - Spring 2017 41

