
Database Systems
CSE 414

Lectures 11 – 12:
Basics of Query Optimization and

Cost Estimation
(Ch. 15.{1,3,4.6,6} & 16.4-5)

CSE 414 - Spring 2017 1

Announcements

• HW3 is due Tuesday

• WQ4 is due Thursday

• Midterm on Friday
– we’ll talk more about it on Monday

• Husky Football spring game tomorrow

CSE 414 - Spring 2017 2

Motivation

• To understand performance, need to
understand a bit about how a DBMS works
– my database application is too slow… why?
– one of the queries is very slow… why?

• Under your direct control: index choice
– understand how that affects query performance

CSE 414 - Spring 2017 3

Recap: Query Evaluation

Parse & Check Query

Decide how best to
answer query:

query optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 414 - Spring 2017 4

Logical plan à
physical plan

CSE 414 - Spring 2017 5

Query Optimizer Overview

• Input: Parsed & checked SQL
• Output: A good physical query plan
• Basic query optimization algorithm:

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan

• Compute number of I/Os
• Optionally take into account other resources

– Choose plan with lowest cost
– This is called cost-based optimization

CSE 414 - Spring 2017 6

Query Optimizer Overview

• There are exponentially many query plans
– exponential in the size of the query
– simple SFW with 3 joins has not too many

• Optimizer will consider many, many of them
• Worth substantial cost to avoid bad plans

Rest of Today

• Cost of reading from disk

• Cost of single RA operators

• Cost of query plans

CSE 414 - Spring 2017 7

Cost of Reading
Data From Disk

CSE 414 - Spring 2017 8

Cost Parameters
• Cost = Disk I/O + CPU + Network I/O

– We will focus on Disk I/O
• Parameters:

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, A) = # of distinct values of attribute a

• When A is a key, V(R,A) = T(R)
• When A is not a key, V(R,A) can be anything < T(R)

• Where do these values come from?
– DBMS collects statistics about data on disk

9CSE 414 - Spring 2017

Selectivity Factors for Conditions

• A = c /* σA=c(R) */
– Selectivity = 1/V(R,A)

• A < c /* σA<c(R)*/
– Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity = (c2 – c1)/(High(R,A) - Low(R,A))

CSE 414 - Spring 2017 10

Example: Selectivity of σA=c(R)

CSE 414 - Spring 2017 11

T(R) = 100,000
V(R, A) = 20

How many records are returned by sA=c(R) = ?

Answer: X * T(R), where X = selectivity…
... X = 1/V(R,A) = 1/20

Number of records returned = 100,000/20 = 5,000

CSE 414 - Spring 2017

Cost of Index-based Selection

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor X (see previous slide)
– Clustered index: X*B(R)
– Unclustered index X*T(R)

12

Note: we are ignoring I/O cost for index pages

Example: Cost of σA=c(R)

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered:
– If index is unclustered:

B(R) = 2000
T(R) = 100,000
V(R, A) = 20

cost of sA=c(R) = ?

Lesson: Don’t build unclustered indexes when V(R,A) is small !

CSE 414 - Spring 2017 13

B(R)/V(R,A) = 100 I/Os

T(R)/V(R,A) = 5,000 I/Os

Cost of Executing Operators
(Focus on Joins)

CSE 414 - Spring 2017 14

CSE 414 - Spring 2017

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

• Note about readings:
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book

15

CSE 414 - Spring 2017

Join Algorithms

• Hash join

• Nested loop join

• Sort-merge join

16

CSE 414 - Spring 2017

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)

• One-pass algorithm when B(R) ≤ M
– more disk access also when B(R) > M

17

Hash Join Example

18

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

19

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Large
enough

This is one page
with two tuples

Hash Join Example

20

Step 1: Scan Patient and build hash table in memory

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

Hash Join Example

21

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk

Hash Join Example

22

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4

Hash Join Example

23

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

CSE 414 - Spring 2017

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

24

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

CSE 414 - Spring 2017

Block-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

25

What is the Cost?

for each block of tuples r in R do
for each block of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

1 2

Block-at-a-time Refinement

26

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4

Block-at-a-time Refinement

27

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

Page-at-a-time Refinement

28

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2Keep going until read
all of Insurance

1 2

3 4

Block-at-a-time Refinement

29

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
4 4

Input buffer for Insurance2 4

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

Cost: B(R) + B(R)B(S)

CSE 414 - Spring 2017

Block-Nested-Loop Refinement

• Cost: B(R) + B(R)B(S)/(M-1)

30

What is the Cost?

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

CSE 414 - Spring 2017

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

31

Sort-Merge Join Example

32

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

33

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

34

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

35

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Sort-Merge Join Example

36

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Using PK,
so only one
can match

Sort-Merge Join Example

37

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
3 3

Sort-Merge Join Example

38

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
3 3

Keep going until end of first relation

CSE 414 - Spring 2017

Index Nested Loop Join

R ⋈S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S

• Cost:
– If index on S is clustered: B(R) + T(R)B(S)/V(S,A)
– If index on S is unclustered: B(R) + T(R)T(S)/V(S,A)

39

Cost of Query Plans

CSE 414 - Spring 2017 40

CSE 414 - Spring 2017 41

Physical Query Plan 1

Supplier Supply

sno = sno

s scity=‘Seattle’ Ùsstate=‘WA’ Ù pno=2

p sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
= 100 + 100 * 100
= 10,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 414 - Spring 2017 42

Supplier Supply

sno = sno

(a) s scity=‘Seattle’ Ùsstate=‘WA’

p sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(b) s pno=2

(Scan
write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (a)
+ 100 + 100 * 1/2500 (b)
+ 2 (c)
+ 0 (d)
Total cost » 204 I/Os

(c)

(d)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

43

Supply Supplier

sno = sno

s scity=‘Seattle’ Ùsstate=‘WA’

p sname

(Index nested loop)

(Index on sno)
Clustering does not matter

(On the fly)

(a) s pno=2

(Index on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (a)
+ 4 (b)
+ 0 (c)
+ 0 (d)
Total cost » 5 I/Os

(Use hash index)

(b)

(c)

(d)

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

