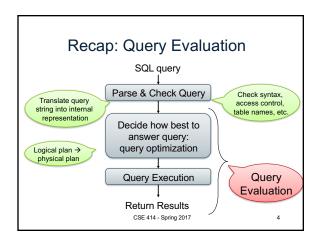
Database Systems CSE 414

Lectures 11 – 12:
Basics of Query Optimization and
Cost Estimation
(Ch. 15.{1,3,4.6,6} & 16.4-5)

CSE 414 - Spring 2017

Announcements

- · HW3 is due Tuesday
- · WQ4 is due Thursday
- Midterm on Friday
 - we'll talk more about it on Monday
- · Husky Football spring game tomorrow


CSE 414 - Spring 2017

Motivation

- To understand performance, need to understand a bit about how a DBMS works
 - my database application is too slow... why?
 - one of the queries is very slow... why?
- Under your direct control: index choice
 - understand how that affects query performance

CSE 414 - Spring 2017

3

Query Optimizer Overview

- · Input: Parsed & checked SQL
- · Output: A good physical query plan
- · Basic query optimization algorithm:
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - Compute number of I/Os
 - · Optionally take into account other resources
 - Choose plan with lowest cost
 - This is called cost-based optimization

CSE 414 - Spring 2017

Query Optimizer Overview

- · There are exponentially many query plans
 - exponential in the size of the query
 - simple SFW with 3 joins has not too many
- · Optimizer will consider many, many of them
- Worth substantial cost to avoid bad plans

CSE 414 - Spring 2017

Rest of Today

- · Cost of reading from disk
- · Cost of single RA operators
- · Cost of query plans

CSE 414 - Spring 2017

Cost of Reading Data From Disk

CSE 414 - Spring 2017

Cost Parameters

- Cost = Disk I/O + CPU + Network I/O
 - We will focus on Disk I/O
- Parameters:
 - B(R) = # of blocks (i.e., pages) for relation R
 - T(R) = # of tuples in relation R
 - V(R, A) = # of distinct values of attribute a
 - When A is a key, V(R,A) = T(R)
 - When A is not a key, V(R,A) can be anything < T(R)
- · Where do these values come from?
 - DBMS collects statistics about data on disk
 CSE 414 Spring 2017

Selectivity Factors for Conditions

- A = c /* $\sigma_{A=c}(R)$ */
 Selectivity = 1/V(R,A)
- A < c /* $\sigma_{A < c}(R)^*$ /
- Selectivity = (c Low(R, A))/(High(R,A) Low(R,A))
- $\begin{array}{ll} \bullet & \text{c1} < \text{A} < \text{c2} & /^* \ \sigma_{\text{c1} < \text{A} < \text{c2}}(\text{R})^* / \\ & \ \text{Selectivity} = (\text{c2} \text{c1}) / (\text{High}(\text{R},\text{A}) \text{Low}(\text{R},\text{A})) \end{array}$

CSE 414 - Spring 2017

10

12

Example: Selectivity of $\sigma_{A=c}(R)$

T(R) = 100,000 V(R, A) = 20

How many records are returned by $\sigma_{A=c}(R) = ?$

Answer: X * T(R), where X = selectivity... ... X = 1/V(R,A) = 1/20

Number of records returned = 100,000/20 = 5,000

CSE 414 - Spring 2017

Cost of Index-based Selection

- Sequential scan for relation R costs B(R)
- · Index-based selection
 - Estimate selectivity factor X (see previous slide)
 - Clustered index: X*B(R)
 - Unclustered index X*T(R)

Note: we are ignoring I/O cost for index pages

CSE 414 - Spring 2017

Example: Cost of $\sigma_{A=c}(R)$

• Example:

B(R) = 2000 T(R) = 100,000 V(R, A) = 20

cost of $\sigma_{A=c}(R) = ?$

• Table scan: B(R) = 2,000 I/Os

· Index based selection:

- If index is clustered: B(R)/V(R,A) = 100 I/Os- If index is unclustered: T(R)/V(R,A) = 5,000 I/Os

Lesson: Don't build unclustered indexes when V(R,A) is small!

CSE 414 - Spring 2017

13

15

17

Cost of Executing Operators (Focus on Joins)

CSE 414 - Spring 2017

Outline

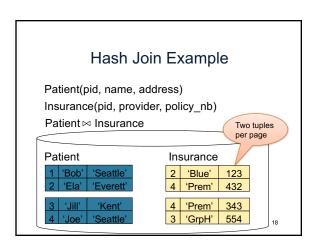
- · Join operator algorithms
 - One-pass algorithms (Sec. 15.2 and 15.3)
 - Index-based algorithms (Sec 15.6)
- · Note about readings:
 - In class, we discuss only algorithms for joins
 - Other operators are easier: read the book

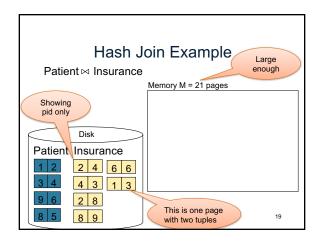
CSE 414 - Spring 2017

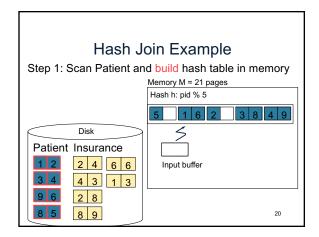
4 - Spring 2017

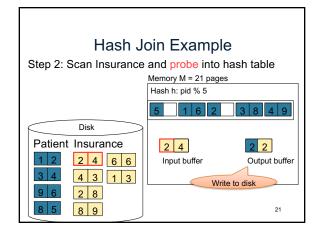
Join Algorithms

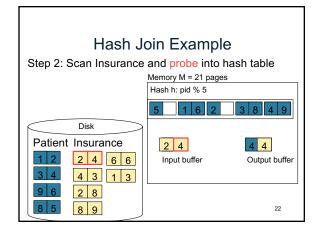
- · Hash join
- · Nested loop join
- · Sort-merge join


CSE 414 - Spring 2017 16


Hash Join

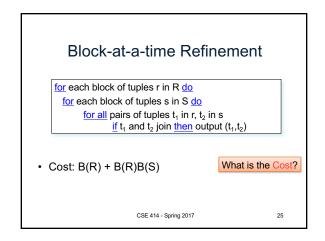

Hash join: $R \bowtie S$

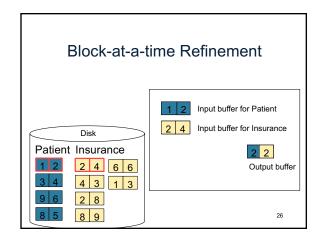

- · Scan R, build buckets in main memory
- · Then scan S and join
- Cost: B(R) + B(S)
- One-pass algorithm when $B(R) \le M$
 - more disk access also when B(R) > M


CSE 414 - Spring 2017

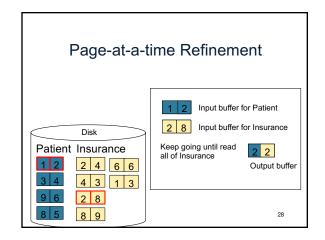
Hash Join Example Step 2: Scan Insurance and probe into hash table Memory M = 21 pages Hash h: pid % 5 1 6 2 Disk Patient Insurance 4 3 4 4 2 4 6 6 Input buffer Output buffer 4 3 1 3 Keep going until read all of Insurance 2 8 Cost: B(R) + B(S) 8 9 23

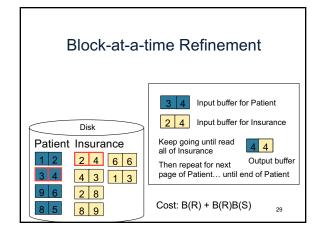
Nested Loop Joins

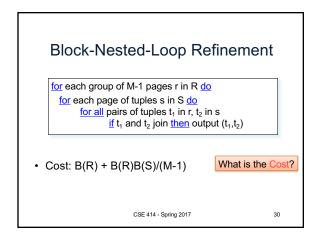

• Tuple-based nested loop R ⋈ S

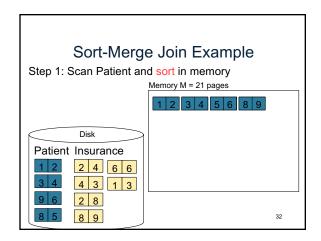

• R is the outer relation, S is the inner relation

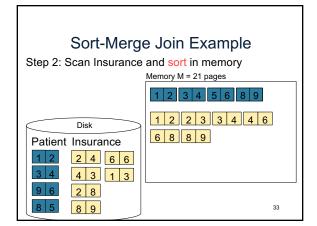

for each tuple t₁ in R do
for each tuple t₂ in S do
if t₁ and t₂ join then output (t₁,t₂)

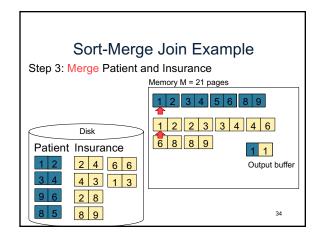

• Cost: B(R) + T(R) B(S)

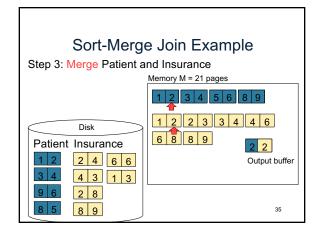

• Multiple-pass since S is read many times

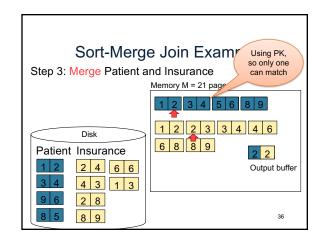


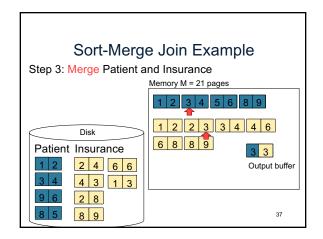

Sort-Merge Join

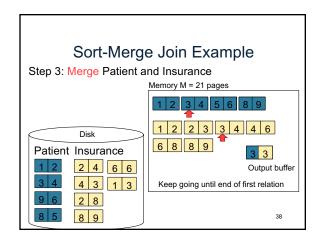

Sort-merge join: R ⋈ S


- · Scan R and sort in main memory
- · Scan S and sort in main memory
- · Merge R and S
- Cost: B(R) + B(S)
- One pass algorithm when B(S) + B(R) <= M
- · Typically, this is NOT a one pass algorithm

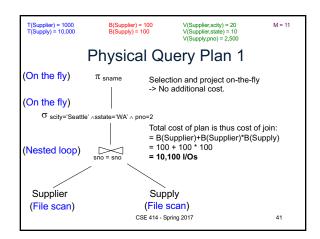

CSE 414 - Spring 2017

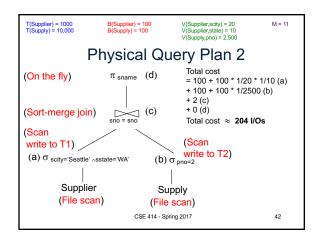

31

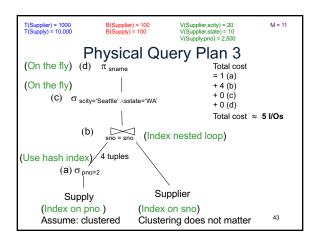




Index Nested Loop Join


$R \bowtie S$


- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Cost:
 - If index on S is clustered: B(R) + T(R)B(S)/V(S,A)
 - If index on S is unclustered: B(R) + T(R)T(S)/V(S,A)


CSE 414 - Spring 2017

39

Cost of Query Plans

