Database Systems
CSE 414

Lectures 9: Relational Algebra
(part 2) and Query Evaluation

(Ch. 5.2 & 16.3 (skim 16.3.2))

Announcements

» Should have used SQL / Azure now
— let us know if you had any setup problems

+ WQ3 is due on Sunday
* HW3 is due one week from Tuesday

+ HW1 grades should be posted tonight

CSE 414 — Spring 2017 2

Join Summary
* Theta-join: R™yS = cyo(R x S)
— Join of R and S with a join condition 6
— Cross-product followed by selection 6
* Equijoin: R4S = 64(R x S)
— Join condition 6 consists only of equalities
* Natural join: R™ S = 15 (6(R X S))
— Equijoin
— Equality on all fields with same name in R and in S
— Projection m, drops all redundant attributes

CSE 414 - Spring 2017 3

So Which Join Is It ?

When we write R >4 S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

CSE 414 - Spring 2017 4

More Joins

+ Outer join
— Include tuples with no matches in the output
— Use NULL values for missing attributes
— Does not eliminate duplicate columns

* Variants
— Left outer join
— Right outer join
— Full outer join

CSE 414 - Spring 2017 5

Outer Join Example

AnonPatient P
- - AnonJob J
age |zip disease
54 [98125 |heart iob age |zip
20 98120 flu lawyer |54 98125
33 98120 lung cashier |20 98120
P.age | P.zip disease |job J.age J.zip
P N J 54 98125 | heart lawyer |54 98125
20 98120 |flu cashier |20 98120
33 98120 |lung null null null

CSE 414 - Spring 2017 6

More Examples

Supplier(sno,sname,scity,sstate)
Part (pno,pname,psize,pcolor)
Supply(sno,pno,gty,price)

Name of supplier of parts with size greater than 10
Tename(SUpplier DI SupplY B<I(Gpsize-10 (Part))

Name of supplier of red parts or parts with size greater than 10
Ttsname(Supplier >DISupply D(Spsize>10 (Part) U cpcoior=rea (Part)))

CSE 414 - Spring 2017

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

From SQL to RA
e}

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and
z.city = ‘Seattle’

X.name,z.name

x.pid = y.pid and y.cid = z.cid and
price > 100 and city = ‘Seattle’

7
s

Product Purchase

x—Qq—3 —

Query Evaluation Steps
SQL ?uery

- —_ [Parse & Check Query } Check syntax,

/" Translate query = 2 access control,)

string into internal | *._table names, etc.
representation ~-

Decide how best to

answer query:

/" Logical plan > query optimization
physical plgn

[Query Execution]

|

Return Results
CSE 414 - Spring 2017

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

From SQL to RA
d

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and

X.name,z.name
z.city = ‘Seattle’

Can you think of

price>100 and city=‘Seattle’
another plan?

/ id=cid
7 pid=pid
/ \ Customer

Product Purchase

J—a—n—

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

From SQL to RA

SELECT DISTINCT x.name, z.name 5
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and
z.city = ‘Seattle’

X.name,z.name

X/?-l\

Can you think of
another plan?

< pid=pid o
city=‘Seattle’
CEEEEE—— /
Push selections down o
the query plan! price>100
/ Customer

Query optimization: find TrOdUCt Purchase

| an equivalent optimal plan

Extended RA:
Operators on Bags
* Duplicate elimination &

» Grouping & aggregation y
» Sorting 1

CSE 414 - Spring 2017

Logical Query Plan

T3(city, ¢)
SELECT city, count(*) _—
FROM sales €
GROUP BY city ‘ T2(city,p,c)
HAVING sum(price) > 100 O'p>100
‘ T1(city,p,c)

Y city, sum(price)—p, count(*) — ¢

T1, T2, T3 =temporary tables sales(product, city, price)

CSE 414 - Spring 2017 13

Typical Plan for Block (1/2)

| N SELECT fields
T fields FROMR, S, ...
| WHERE condition

O selection condition

> SELECT-PROJECT-JOIN

join condition Query
join condition
R s 7
CSE 414 - Spring 2017 14

Typical Plan for Block (2/2)

T fields
| SELECT fields
O having condition FROMR, S, ...
‘ WHERE condition

Y fields, sum/count/min/max(fields) GROUP BY fields
| HAVING condition

O where condition

join condition

PN

CSE 414 - Spring 2017 15

Supplier(sno,sname,scity,sstate)
Part(pno,pname, psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno
FROM Supplier Q | — T
WHERE Q.sstatem Correlation!
and not exists
(SELECT * /
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)

CSE 414 - Spring 2017 16

Supplier(sno,sname,scity,sstate)
Part(pno,pname, psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

De-Correlatio

SELECT Q.snho
FROM Supplier Q

Supplier(sno,sname,scity,sstate)
Part(pno,pname, psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA
and Q.sno not in

(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

e L
Un-nesting
(SELECT Q.sno —

FROM Supplier Q

WHERE Q.sstate = ‘WA) SELECT Q.sno

EXCEPT FROM Supplier Q
(SELECT P.sno ::I WHERE Q.sstate = ‘WA’
and Q.sno not in

FROM Supply P
WHERE P.price > 100)

(SELECT P.sno

CSE 414 - Spring 2017 17

FROM Supply P

EXCEPT = set difference WHERE P.price > 100)

CSE 414 - Spring 2017 18

Supplier(sno,sname,scity,sstate)
Part(pno,pname, psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

(SELECT Q.sno
FROM Supplier Q

WHERE Q.sstate = ‘WA /\
EXCEPT :> Teno Tisno
\ |

(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

Osstate='WA' OPrice > 100

Supplier Supply

CSE 414 - Spring 2017 19

From Logical Plans
to Physical Plans

CSE 414 - Spring 2017 20

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,
with a focus on join

CSE 414 - Spring 2017 21

Product(pid, name, price)
Purchase(pid. cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) P ig=piq Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join Oo(??)
2. Merge join Oo(??)
3. Hash join O(??)

(note that pid is a key)

CSE 414 - Spring 2017 22

Product(pid, name, price)
Purchase(pid, cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) Pd 4=pia Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the

tables are in main memory:
O(n2 two nested loops

1. Nested Loop Join

2. Merge join O(??)
3. Hashjoin o(??)
CSE 414 - Spring 2017 23

Product(pid, name, price)
Purchase(pid. cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) M i4=pis Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the

tables are in main memory: sort both — O(n log n)
1. Nested Loop Join O(n?)
2. Merge join O(n log n)

3. Hashjoin Oo(??)

CSE 414 - Spring 2017 24

Product(pid, name, price)
Purchase(pid, cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) Pd 4=pia Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(n2)
2. Merge join O(n log n)
3. Hashjoin O(n) ... O(n?)

add n to hash — O(n)?
lookup n in hash — O(n)?

CSE 414 - Spring 2017 25

BRIEF Review of Hash Tables

Separate chaining:

A (naive) hash function: o
1 WHY 22
[h(x) =xmod 10}
3 503 103 503
4
. . 5
Operations: 6 76 [[{ese] |
i =77 ’
f|nd(103) 71 s e[
insert(488) =??) o

BRIEF Review of Hash Tables

* insert(k, v) = inserts a key k with value v

» Many values for one key
— Hence, duplicate k's are OK

« find(k) = returns the list of all values v
associated to the key k

CSE 414 - Spring 2017 27

Query Evaluation Steps Review
SQL ?uery

[Parse & Rewrite Query}

optimization _
.
Physical
plan

28

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Relational Algebra

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Give a relational algebra expression for this query

CSE 414 - Spring 2017 29

Supplier(sid, sname, scity, sstate)
Supply(sid. pno, quantity)

Relational Algebra

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

nsname(o scity=‘Seattle’ /\ sstate= ‘WA’ /\ pno=2 (Supplier Psid = sid SUDD'V))

CSE 414 - Spring 2017 30

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Relational Algebra

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T sname

9 scity=‘Seattle’ /\ sstate= ‘WA’ /\ pno=2

>< sid = sid
Relational algebra expression is / \
also called the “logical query plan”
Supplier Supply
CSE 414 - Spring 2017 31

Supplier(sid, sname, scity, sstate)
Supply(sid. pno, quantity)

Physical Query Plan 1

(On the ﬂy) s sname

A physical query plan is a logical
query plan annotated with
(On the ﬂy) physical implementation details

& scity= ‘Seattle’ /\sstate= ‘WA’ /\ pno=2 SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

(Nested loop)

sid = sid and y.pno =2
/ \ and x.scity = ‘Seattle’
and x.sstate = ‘WA’
Supplier Supply
(File scan) (File scan)
CSE 414 - Spring 2017 32

Supplier(sid, sname, scity, sstate)
Supply(sid. pno, quantity)

Physical Query Plan 2

(On the fly) T sname

Same logical query plan
Different physical plan

(On the fly)

O scity="Seattle’ /\sstate="WA" A pno=2 SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

sid =i and y.pno =2

and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(Hash join)

Supplier Supply
(File scan) (File scan)
CSE 414 - Spring 2017 33

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 3

Different but equivalent logical
(On the fly) T sname query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
o WHERE x.sid = y.sid
(Sort-merge join) = and y.pno =2
sid = sid and x.scity = ‘Seattle’
(Scan & writey/)/ and x.sstate = ‘WA’
(Scan & write to T2)
9 scity= ‘Seattle’ /\sstate= ‘WA’ (o) pno=2
Supplier Supply
(File scan) (File scan)
CSE 414 - Spring 2017 34

Query Optimization Problem
« For each SQL query... many logical plans
« For each logical plan... many physical plans
* How do find a fast physical plan?

— Will discuss in a few lectures

CSE 414 - Spring 2017 35

