Database Systems CSE 414

Lectures 8: Relational Algebra (Ch. 2.4, \& 5.1)

Announcements

- WQ3 is due Sunday 11 pm
- Azure codes will be sent out Wed/Thu
- Don't miss section tomorrow
- will go through Azure setup and basic use
- HW3 will be posted by Thu night
- due on Tuesday, 4/25 (in 13 days)

Where We Are

- Motivation for using a DBMS for managing data
- SQL:
- Declaring the schema for our data (CREATE TABLE)
- Inserting data one row at a time or in bulk (INSERT/.import)
- Modifying the schema and updating the data (ALTER/UPDATE)
- Querying the data (SELECT)
- Next step: More knowledge of how DBMSs work
- Client-server architecture
- Relational algebra and query execution

Query Evaluation Steps

The WHAT and the HOW

- $\operatorname{SQL}=$ WHAT we want to get from the data
- Relational Algebra $=$ HOW to get the data we want
- Move from WHAT to HOW is query optimization
- SQL ~> Relational Algebra ~> Physical Plan
- Relational Algebra = Logical Plan

Relational Algebra

Sets v.s. Bags

- Sets: $\{a, b, c\},\{a, d, e, f\},\{ \}, \ldots$
- Bags: $\{a, a, b, c\},\{b, b, b, b, b\}, \ldots$

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

Relational Algebra Operators

- Union \cup, intersection \cap, difference -
- Selection σ
- Projection π (П)
- Cartesian product \times, join \bowtie
- Rename ρ
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ

Union and Difference

$R 1 \cup R 2$
$R 1-R 2$

What do they mean over bags?

What about Intersection?

- Derived operator using minus

$$
R 1 \cap \mathrm{R} 2=\mathrm{R} 1-(\mathrm{R} 1-\mathrm{R} 2)
$$

- Derived using join (will explain later)

$$
R 1 \cap R 2=R 1 \bowtie R 2
$$

Selection

- Returns all tuples which satisfy a condition

$\sigma_{c}(R)$

- Examples
- $\sigma_{\text {satan }>40000}$ (Employee)
- $\sigma_{\text {name }}=$ "smith" (Employee)
- The condition c can be $=,<, \leq,>, \geq,<>$ combined with AND, OR, NOT

Employee

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

$\sigma_{\text {salay }>40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

Projection

- Eliminates columns

$$
\pi_{\mathrm{A} 1, \ldots, \mathrm{An}}(\mathrm{R})
$$

- Example: project social-security number and names:
- $\Pi_{\text {ssn, Name }}$ (Employee)
- Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee | | SSN | Name | Salary |
| :---: | :---: | :---: | :---: |
| 1234545 | John | 20000 | |
| 5423341 | John | 60000 | |
| 4352342 | John | 20000 | |

$\pi_{\text {Name,Salary }}$ (Employee)

Name	Salary
John	20000
John	60000
John	20000

Bag semantics

Name	Salary
John	20000
John	60000

Set semantics

Which is more efficient?

Composing RA Operators

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	p3	98120	lung
4	p4	98120	heart

$\pi_{\text {zip,disease }}$ (Patient)

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

$\sigma_{\text {disease='heart'(Patient) }} \quad \pi_{\text {zip,disease }}\left(\sigma_{\text {disease='heart'(Patient) }}\right)$

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

Cartesian Product

- Each tuple in R1 with each tuple in R2

$$
\mathrm{R} 1 \times \mathrm{R} 2
$$

- Rare in practice; mainly used to express joins

Cross-Product Example

Employee

Name	SSN
John	999999999
Tony	777777777

Dependent

EmpSSN	DepName
999999999	Emily
777777777	Joe

Employee \times Dependent

Name	SSN	EmpSSN	DepName
John	999999999	999999999	Emily
John	999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe

Renaming

- Changes the schema, not the instance

$\rho_{\mathrm{B} 1, \ldots, \mathrm{Bn}}(\mathrm{R})$

- Example:
$-\rho_{\mathrm{N}, \mathrm{S}}$ (Employee) \rightarrow Answer(N, S)
Not really used by systems, but needed on paper

Natural Join

R1 \bowtie R2

- Meaning: R1凶R2 $=\pi_{A}\left(\sigma_{\theta}(\mathrm{R} 1 \times \mathrm{R} 2)\right)$
- Where:
- Selection σ checks equality of all common attributes (attributes with same names)
- Projection π eliminates duplicate common attributes

Natural Join Example

R

\mathbf{A}	\mathbf{B}
X	Y
X	Z
Y	Z
Z	V

S S | \mathbf{B} | \mathbf{C} |
| :---: | :---: |
| Z | U |
| v | W |
| z | V |

$R \bowtie S=$
$\pi_{A B C}\left(\sigma_{R . B=S . B}(R \times S)\right)$

A	B	C
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

CSE 414 - Spring 2017

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$\mathrm{P} \bowtie \mathrm{V}$

age	zip	disease	name
54	98125	heart	p 1
20	98120	flu	p 2

Natural Join

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?
- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Theta Join

- A join that involves a predicate

$$
\mathrm{R} 1 \bowtie_{\theta} \mathrm{R} 2=\sigma_{\theta}(\mathrm{R} 1 \times \mathrm{R} 2)
$$

- Here θ can be any condition
- For our voters/patients example:
$P \bowtie_{\text {P.zip }=V . z i p ~ a n d ~ P . a g e ~}^{>=}$V.age -1 and P.age $<=$ V.age +1 V

Equijoin

- A theta join where θ is an equality predicate
- By far the most used variant of join in practice

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$$
\mathrm{P} \bowtie_{\text {P.age }=\mathrm{V} . \mathrm{age}} \mathrm{~V}
$$

P.age	P.zip	P.disease	P.name	V.zip	V.age
54	98125	heart	p1	98125	54
20	98120	flu	p2	98120	20

Join Summary

- Theta-join: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- Equijoin: $R \bowtie_{\theta} S=\pi_{A}\left(\sigma_{\theta}(R \times S)\right)$
- Join condition θ consists only of equalities
- Natural join: $\mathrm{R} \bowtie S=\pi_{\mathrm{A}}\left(\sigma_{\theta}(\mathrm{R} \times \mathrm{S})\right.$)
- Equijoin
- Equality on all fields with same name in R and in S
- Projection π_{A} drops all redundant attributes

So Which Join Is It?

When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

- Outer join
- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Does not eliminate duplicate columns
- Variants
- Left outer join
- Right outer join
- Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

P D J | P.age | P.zip | disease | job | J.age | J.zip |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 54 | 98125 | heart | lawyer | 54 | 98125 |
| 20 | 98120 | flu | cashier | 20 | 98120 |
| 33 | 98120 | lung | null | 33 | 98120 |

More Examples

```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)
```

Name of supplier of parts with size greater than 10
$\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}\right.$ (Part))

Name of supplier of red parts or parts with size greater than 10 $\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $) \cup \sigma_{\text {pcolor='red' }}($ Part $\left.\left.)\right)\right)$

