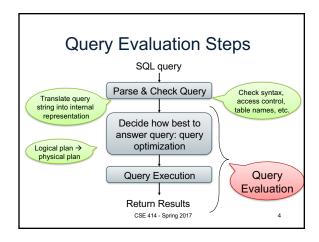
Database Systems CSE 414

Lectures 8: Relational Algebra (Ch. 2.4, & 5.1)

CSE 414 - Spring 2017

Announcements


- · WQ3 is due Sunday 11pm
- · Azure codes will be sent out Wed/Thu
- Don't miss section tomorrow
 will go through Azure setup and basic use
- HW3 will be posted by Thu night
 due on Tuesday, 4/25 (in 13 days)

2

Where We Are

- · Motivation for using a DBMS for managing data
- · SOL
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

CSE 414 - Spring 2017

The WHAT and the HOW

- SQL = WHAT we want to get from the data
- Relational Algebra = HOW to get the data we want
- Move from WHAT to HOW is query optimization
 - SQL ~> Relational Algebra ~> Physical Plan
 - Relational Algebra = Logical Plan

CSE 414 - Spring 2017

Relational Algebra

CSE 414 - Spring 2017

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, {}, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

CSE 414 - Spring 2017

Relational Algebra Operators

• Union \cup , intersection \cap , difference \cdot • Selection σ • Projection π (Π)
• Cartesian product \times , join \bowtie • Rename ρ • Duplicate elimination δ • Grouping and aggregation γ • Sorting τ

Union and Difference

R1 ∪ R2 R1 – R2

What do they mean over bags?

CSE 414 - Spring 2017

What about Intersection?

CSE 414 - Spring 2017

· Derived operator using minus

· Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

CSE 414 - Spring 2017

10

Selection

· Returns all tuples which satisfy a condition

 $\sigma_{\rm c}({\sf R})$

- Examples
 - $-\sigma_{Salary>40000}$ (Employee)
 - $-\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be =, <, ≤, >, ≥, <> combined with AND, OR, NOT

CSE 414 - Spring 2017

 Employee
 SSN
 Name
 Salary

 1234545
 John
 20000

 5423341
 Smith
 60000

 4352342
 Fred
 50000

SSN

Name

Salary

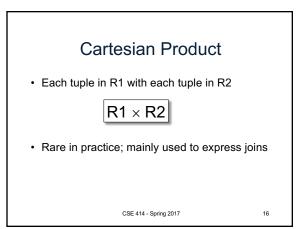
Salary

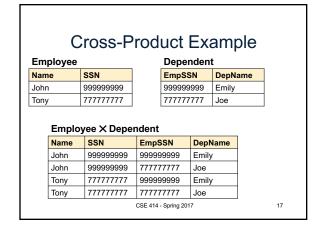
SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

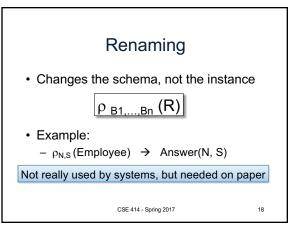
CSE 414 - Spring 2017

Projection

· Eliminates columns


$$\pi_{A1,...,An}(R)$$


- Example: project social-security number and names:
 - Π _{SSN, Name} (Employee)
 - Answer(SSN, Name)


Different semantics over sets or bags! Why?

Employee	Name	Salary				
	1234545	John	20000			
5423341 John 6000		60000				
4352342 John 20000						
$\pi_{\text{Name,Salary}}$ (Employee)						
Name Salary Name Salary						
Name	Salary	Name	Salary			
Name John	Salary 20000	Name John	Salary 20000			
	•					
John	20000	John	20000			
John John John	20000 60000	John John	20000			

Composing RA Operators $\pi_{\text{zip,disease}}(\text{Patient})$ Patient name zip disease no zip disease p1 98125 98125 98125 98125 heart heart p2 рЗ 98120 lung 98120 lung p4 98120 heart 98120 heart σ_{disease='heart'}(Patient) $\pi_{\text{zip,disease}}\left(\sigma_{\text{disease='heart'}}(\text{Patient})\right)$ zip disease p2 98125 98125 p4 98120 98120 heart heart CSE 414 - Spring 2017 15

Natural Join

R1 ⋈ R2

- Meaning: R1 \bowtie R2 = $\pi_A(\sigma_\theta(R1 \times R2))$
- · Where:
 - Selection σ checks equality of all common attributes (attributes with same names)
 - Projection π eliminates duplicate common attributes

CSE 414 - Spring 2017

Natural Join Example R В U С R ⋈ S = U $\pi_{ABC}(\sigma_{R.B=S.B}(R \times S))$ U ٧ W CSE 414 - Spring 2017

Natural Join Example 2

AnonPatient P

7 arom desorter				
age	zip	disease		
54	98125	heart		
20	98120	flu		

Voters V

	name	age	zip		
	p1	54	98125		
	n2	20	98120		

21

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

CSE 414 - Spring 2017

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of $R \bowtie S$?
- Given R(A, B, C), S(D, E), what is $R \bowtie S$?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

CSE 414 - Spring 2017

22

AnonPatient (age, zip, disease) Voters (name, age, zip)

Theta Join

· A join that involves a predicate

 $R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$

- Here $\boldsymbol{\theta}$ can be any condition
- For our voters/patients example:

P P Rzip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V CSE 414 - Spring 2017

Equijoin

- A theta join where θ is an equality predicate
- By far the most used variant of join in practice

CSE 414 - Spring 2017

24

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

١	Voters V						
	name	age	zip				
	p1	54	98125				
	p2	20	98120				

$P\bowtie_{P.age=V.age}V$

P.age	P.zip	P.disease	P.name	V.zip	V.age
54	98125	heart	p1	98125	54
20	98120	flu	p2	98120	20

CSE 414 - Spring 2017

25

27

Join Summary

- Theta-join: $R^{\bowtie}_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection $\boldsymbol{\theta}$
- Equijoin: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Join condition $\boldsymbol{\theta}$ consists only of equalities
- Natural join: $R^{\bowtie} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
 - Projection π_A drops all redundant attributes

CSE 414 - Spring 2017

So Which Join Is It?

When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

CSE 414 - Spring 2017

More Joins

- Outer join
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
 - Does not eliminate duplicate columns
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

CSE 414 - Spring 2017

28

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	luna

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

$P \bowtie J$

P.age	P.zip	disease	job	J.age	J.zip
54	98125	heart	lawyer	54	98125
20	98120	flu	cashier	20	98120
33	98120	lung	null	33	98120
CSE 414 - Spring 2017					29

More Examples

Supplier(<u>sno</u>, sname, scity, sstate)
Part(<u>pno</u>, pname, psize, pcolor)
Supply(<u>sno</u>, <u>pno</u>, qty, price)

Name of supplier of parts with size greater than 10 $\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10} (Part))$

Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \, (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \, (\text{Part}) \,) \,)$

CSE 414 - Spring 2017

17 30