4/10/17

Database Systems
CSE 414

Lecture 7: SQL Wrap-up

CSE 414 - Spring 2017 1

Announcements

+ WQ3 is out, due Sunday 11pm

* HW2 is due tomorrow (Tue) 11pm
— H3 will be posted later this week
— you will be using Microsoft Azure
— we will send out codes for free student use
o good for 6 months and up to $600

CSE 414 - Spring 2017 2

Recap from last lecture

» Subqueries can occur in many clauses:
- SELECT
- FROM
- WHERE

* Monotone queries: SELECT-FROM-WHERE
— Existential quantifier

* Non-monotone queries
— Universal quantifier
— Aggregation

CSE 414 - Spring 2017 3

Examples of Complex Queries

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

1. Find drinkers that frequent some bar that serves some beer they like.

2. Find drinkers that frequent some bar that serves only beers they don't like.

3. Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)

F ts(drinker, b
Sevestoa been | Example 1

Find drinkers that frequent some bar that serves some beer they like.

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar AND

Y.beer = Z.beer AND

X.drinker = Z.drinker

drinker + bar they frequent + beer served that they like
=> drinker is an answer

(even though we only want the drinker,
we need the rest to know it's an answer.)

Likes(drinker, beer)

F ts(drinker, b
Soveston neen | Example 1

Find drinkers that frequent some bar that serves some beer they like.

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar AND

Y.beer = Z.beer AND

X.drinker = Z.drinker

What happens if we didn’t write DISTINCT?

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 2

Find drinkers that frequent some bar that serves only beers they don't like

4/10/17

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 2

Find drinkers that frequent some bar that serves only beers they don't like

bar serves only beers that X does not like =
bar that does NOT serve some beer that X does like

Let’s find the others (drop the NOT):
Drinkers that frequent some bars that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 2

Find drinkers that frequent some bar that serves only beers they don't like

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 2

Let’s find the others (drop the NOT):

Drinkers that frequent some bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they don't like

That’s the previous query...

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar AND

Y.beer = Z.beer AND

X.drinker = Z.drinker

Let's find the others (drop the NOT):
Drinkers that frequent some bars that serves some beer they like.

That's the previous query... Let’s write it with a subquery:

SELECT DISTINCT X.drinker
FROM Frequents X
WHERE EXISTS (SELECT *
FROM Serves Y, Likes Z
WHERE X.bar=Y.bar AND
X.drinker=Z.drinker AND|

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 2

Find drinkers that frequent some bar that serves only beers they don't like

Y.beer = Z.beer) 10
Likes(drinker, beer)
Frequents(drinker, bar
Serves(ba(r, beer)) Example 3

Let’s find the others (drop the NOT):

Drinkers that frequent some bars that serves some beer they like.

That's the previous query... Let’s write it with a subquery:

Now negate!
SELECT DISTINCT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *
FROM Serves Y, Likes Z
WHERE X.bar=Y.bar AND
X.drinker=Z.drinker AND)
Y.beer = Z.beer) 1

Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 3

X frequents only bars that serve some beer X likes =
X does NOT frequent some bar that serves only beer X doesn't like

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the others (drop the NOT):
Drinkers that frequent some bar that serves only beer they don't like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 3

Find drinkers that frequent only bars that serves some beer they like.

4/10/17

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 3

Find drinkers that frequent only bars that serves some beer they like.

Let's find the others (drop the NOT):
Drinkers that frequent some bar that serves only beer they don't like.

That’s the previous query!

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Example 3

Let’s find the others (drop the NOT):
Drinkers that frequent some bar that serves only beer they don't like.

That's the previous query!

SELECT DISTINCT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *
FROM Serves Y, Likes Z
WHERE X.bar=Y.bar AND
X.drinker=Z.drinker AND|

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the others (drop the NOT):
Drinkers that frequent some bar that serves only beer they don't like.

That’s the previous query! But write it as a nested query:

SELECT DISTINCT U.drinker
FROM Frequents U
WHERE U.drinker IN
(SELECT DISTINCT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *
FROM Serves Y, Likes Z
WHERE X.bar=Y.bar AND
X.drinker=Z.drinker AND

Y.beer = Z.beer) s
Likes(drinker, beer)
Frequents(drinker, bar
Serves(ba(r, beer)) Exa m ple 3

Find drinkers that frequent only bars that serves some beer they like.

Let’s find the others (drop the NOT):
Drinkers that frequent some bar that serves only beer they don't like.

That's the previous query! Now need three
nested queries
Now negate!

SELECT DISTINCT U.drinker
FROM Frequents U
WHERE U.drinker NOT IN
(SELECT DISTINCT X.drinker
FROM Frequents X
WHERE NOT EXISTS (SELECT *
FROM Serves Y, Likes Z
WHERE X.bar=Y.bar AND
X.drinker=Z.drinker AND
Y.beer = Z.beer)) "

Y.beer = Z.beer)) 16
Product (pname, price, cid)
Company(cid, cname, city)
Unnesting Aggregates

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)

FROM Company Y
WHERE X.city = Y.city)

FROM_ Company X

SELECT city, count(*)
FROM Company

GROUP BY city Note: no need for DISTINCT

(DISTINCT is the same as GROUP BY)

CSE 414 - Spring 2017

4/10/17

Product (pname, price, cid)
Company(cid, cname, city)

Unnesting Aggregates

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Company Y
WHERE X.city = Y.city)

Equivalent queries

FROM_ Company X

SELECT city, count(*)
FROM Company
GROUP BY city

CSE 414 - Spring 2017

Product (pname, price, cid)
Company(cid, cname, city)

Unnesting Aggregates

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Company Y
WHERE X.city = Y.city)

FROM_ Company X

SELECT city, count(*) - ;
FROM Company Wait... are they equivalent?

GROUP BY city

20
CSE 414 - Spring 2017

Purchase(pid, product, quantity, price)

Grouping vs Nested Queries

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase

WHERE price > 1

GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)
AS TotalSale:

FROM Purchase x

WHERE x.price > 4+—___

CSE 414 - Spring 20

Why twice ?

21

Author(login,name)
Wrote(login,url)

More Unnesting

This is
SQL by
a novice

Find authors who wrote = 10 documents:

Attempt 1: with nested queries

SELECT DISTINCT Author.name /
FROM Author
WHERE 10 <= (SELECT count(url)

FROM Wrote

WHERE Author.login=Wrote.login)

CSE 414 - Spring 2017 22

Author(login,name)
Wrote(login,url)

More Unnesting

Find authors who wrote = 10 documents:
Attempt 1: with nested queries

Attempt 2: using GROUP BY and HAVING

SELECT name

FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY name

HAVING count(url) >= 10

CSE 414 - Spring 2017 23

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

For each city, find the most expensive product made in that city

Finding the maximum price is easy...

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

But we need the witnesses, i.e. the products with max price

CSE 414 - Spring 2017 24

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

To find the witnesses:
compute the maximum price in a subquery

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

WHERE x.cid = y.cid

GROUP BY x.city) w
WHERE u.cid = v.cid

and u.city = w.city

and v.price=w.maxprice;

CSE 414 - Spring 2017 25

4/10/17

(SELECT x.city, max(y.price) as maxprice SN;::;::_ '.i.
FROM Company x, Product y

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid AND
v.price >= ALL (SELECT y.price
FROM Company x, Product y
WHERE u.city=x.city
and x.cid=y.cid);

CSE 414 - Spring 2017 26

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

There is a more concise solution here:

Idea: Product JOIN Product ON “made in the same city”
Then group by first product.
Then check that first product is more expensive than
all of the second products in the group.

SELECT u.city, v.pname, v.price

FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city and x.cid = y.cid
GROUP BY u.city, v.pname, v.price

HAVING v.price = max(y.price);

CSE 414 - Spring 2017 27

BigQuery Demo

New Query Query Editor UDF Editor
#StandardsoL
2 select count(*
3 from Flights.Flights
where origin_ city = 'Seattle WA' and dest_city = 'Boston MA'

il + Enter: run query, Tab or Cir + Space: autocomplete.
SaveQuery SaveView FormatQuery ShowOptions
Query complete (1.4s elapsed, cached) [

Results Explanation Job Information
Download as CSV Download as JSON Save as Table Save to Google Sheets
Row fo_

1 1836

Supports SQL queries on TB of data

(we won't use it in this class, but useful to know about)

CSE 414 - Spring 2017 28

