Database Systems
CSE 414

Section 10: Big Data & Review
Non-Parallel Query Evaluation
Example Schema

Product(\textit{pid}, \textit{name}, \textit{category})
- 10,000 tuples and 1,000 blocks
- 40 different categories

Order(\textit{store}, \textit{pid}, \textit{price}, \textit{quantity})
- 1,000,000 tuples and 50,000 blocks
- prices range from $1 to $100
Example Query

Compute the total revenue, for each store, from electronics costing more than $5 each:

```
SELECT o.store, sum(o.price * o.quantity)
FROM Order o, Product p
WHERE o.pid = p.pid AND o.price > 5 AND
    p.category = 'electronics'
GROUP BY o.store
```
Problem 1

Give an RA expression that:

- computes the result of the query
- does not benefit from the indexes already present

```
Product \(\times\) Order
\(\sigma_{\text{price} > 5}
\pi_{\text{store}, \text{rev}}
\gamma_{\text{pid} = \text{pid}}
\\Sigma_{\text{store}, \sum(\text{price} \times \text{quantity})} \rightarrow \text{rev}
\sigma_{\text{category} = \text{'electronics'}}
```

Product \(\rightarrow\) Order

CSE 414 - Fall 2017
Problem 2

Estimate the cost of the RA expression from Problem 1 after filling in physical implementation details

- assume grouping / aggregation can be done on the fly

• Details:
 - nested loop join
 - write Products to temp T1
 - grouping / aggregation done with in memory hash table

• Scan Order and Product & writing to T1 costs 50k + 1k + 25

• Block nested loop join costs 47.5k * 25 = 1,125k

• Total cost is 1,238,525 blocks (~1M is fine)
Problem 3

Give an RA expression that:
- computes the result of the query
- does benefit from the indexes already present

Order \(\sigma_{\text{price} > 5} \) \(\bowtie_{\text{pid} = \text{pid}} \) \(\sigma_{\text{category} = \text{electronics}} \)

Product

\(\gamma \text{store, sum(price\times\text{quantity})} \rightarrow \text{rev} \)

\(\pi \text{store, rev} \)
Problem 4

Estimate the cost of the RA expression from Problem 3 after filling in physical implementation details
 – assume grouping / aggregation can be done on the fly

• Details:
 – nested loop join using index on Product(pid)
 – grouping / aggregation done with in memory hash table

• Lookup of Product costs 1 block
• Nested loop join costs $50k + 950k \times 1 = 1000k$
• Total cost is $\sim 1M$ blocks (everything else on the fly)
Parallel Query Evaluation
Problem 5

Draw a pipeline that computes the same result in a parallel fashion using N nodes.
Problem 6

Estimate the cost of executing the pipeline of Problem 5

- Only costs are on disk reads of input
 - (everything should fit in memory)
- Each worker reads 50k/N + 1k/N blocks
- Since all workers are reading simultaneous, wait time is time to read 51k/N blocks (plus lower order work)
Problem 7

1. Does your analysis predict a linear speedup as more nodes are added?
 Yes

2. Does your analysis predict a linear scaleup as more nodes are added?
 Yes

3. How realistic is this?
 Fair with a small number of machines, but expect stragglers to be noticeable with 1000s
Problem 8

Describe how to achieve a similar speedup with MapReduce

- MapReduce does only one shuffle, so we need 2 jobs
- First job:
 - map Orders to (pid, ('O', ...)) and Products to (pid, ('P', ...)) for those rows that satisfy selection criteria
 - reducer adds product info to each order in the list
 - note: only one Product in each list since pid is primary key
- Second job:
 - map Order+Product to (store, (...))
 - reducer sums revenue and outputs (store, revenue)
Problem 9

Would your MapReduce have the same IO cost and speedup as the pipeline from problem 6?

- MapReduce writes intermediate results to disk resulting in more IO
 - Two intermediate results and two outputs written
 - None of these are larger than the input, though, so the total cost is no more than 7x the ideal pipeline
 - really 6x since the final output is small

- Despite a constant factor more IO, it should still have a linear speedup (in principle).