
1

Database Systems
CSE 414

Lecture 29: Final Review

CSE 414 - Fall 2017 1

Announcements

• HW8 due tonight 11pm

CSE 414 - Fall 2017 2

Final Exam

• Next Thursday, Dec. 14th, 2:30-4:20

• This room

• Closed books, no phones, no computers

• Allow 2 pages of notes (both sides, 8+pt font)
– but focus of the test will not be memorization

CSE 414 - Fall 2017 3

Course Topics

1. Relational Data

2. DB Applications: Design & Implementation

3. Semi-structured Data

4. DBMS Implementation

5. Big Data Systems

CSE 414 - Fall 2017 4

Relational Data

CSE 414 - Fall 2017 5

1a. Relational Data Model

• tables with schemas
– types for attributes

– primary, secondary, and foreign keys

– other constraints

• set semantics
– each tuple is either in the table or not

CSE 414 - Fall 2017 6

2

1b. Relational Queries

• relational query = expressible in standard RA
– RA = Datalog+neg, also expressible with SQL

• simple SELECT-FROM-WHERE is a subset
– includes joins, but not subqueries

– always monotone, while RA isn’t (e.g. set difference)

• extended RA adds grouping & aggregation
– (also uses bag semantics)

• Datalog adds recursion

CSE 414 - Fall 2017 7 CSE 414 - Fall 2017 8

standard RA
extended

RA

Datalog + neg
+ recursion

Datalog + neg

adds grouping
& aggregation

simple SFW

relational queries

1c. Datalog

• data comes from facts and rules
– P(a1, …, an).

– Q(a1, …, an) :- R1(ai, bk, …), R2(aj, bl, …),

• head is a fact iff there is some way to set bk’s so
that all terms in the body are facts
– variables only appearing in body (bk’s) are existential

• can be translated to SQL
– must be possible, as Datalog is equivalent to RA

– but we didn’t discuss the details…

CSE 414 - Fall 2017 9

DB Applications:

Design & Implementation

CSE 414 - Fall 2017 10

2a. DB Design Process
companycompanymakesmakesproductproduct

namename

priceprice namename addressaddress

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema

Physical storage details

11CSE 414 - Fall 2017

2a. DB Design Process

• E/R Diagrams
– (weak) entity sets, relations, & subclasses

– map each to relations
• multiple ways to do this…

only need to know the approach from class

– design principles:
• model accurately

• neither too few nor too many entities

CSE 414 - Fall 2017 12

3

2a. DB Design Process

• Constraints
– key, single-value, referential & other constraints

• other includes, e.g., positivity and non-null constraints

• Normalization
– eliminates anomalies

• redundancy, update, and deletion anomalies

– are indicated by “bad” functional dependencies

– apply BCNF decomposition to remove them
• these decompositions are never lossy (others can be)

CSE 414 - Fall 2017 13

2b. DB Application Implementation

• JDBC
– connect to DB from Java

– send SQL statements

– use transactions

• 3-tiered architecture for web applications

CSE 414 - Fall 2017 14

3-Tiered Architecture

DB Server

File 1

File 2

File 3

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

CSE 414 - Fall 2017 15

2b. DB Application Implementation

• JDBC
– connect to DB from Java

– send SQL statements

– use transactions

• 3-tiered architecture for web applications
– usually JSON data between web server &

browser/phone

– why not use JSON to the DB too?
• otherwise, we need to translate JSON to relational

CSE 414 - Fall 2017 16

Semi-structured Data

CSE 414 - Fall 2017 17

3a. Semi-structured Data Model
• tree structured data: JSON, XML, etc.

• data is self-describing
– so schema is not necessary

• can choose amount of structure (in AsterixDB)
– partial constraints on shape of data

– open vs. closed types

• NFNF data
– could put entire data in one row (mondial)

• easy to map relation to JSON, but not opposite

CSE 414 - Fall 2017 18

4

3b. Semi-structured Queries

• new concepts
– unnesting: join with contents of list-valued column

– nesting: make list from results of subquery

– each is a new operator for logical query plans

• dealing with heterogeneous data needs work
– often CASE WHEN … for different types

– requiring more structure makes queries easier,
but adding data becomes harder

• (this work has to be done somewhere)

CSE 414 - Fall 2017 19

DBMS Implementation

CSE 414 - Fall 2017 20

4a. Storage & Indexing

• B+ tree & hash indexes
– B+ tree index allows searching by key prefixes also

• understand when an index can be used
– (separate question from whether it improves

performance)

• clustered vs. unclustered
– clustered always speeds up query,

but only one index per table can be clustered

– unclustered only speeds up if <1% tuples match

CSE 414 - Fall 2017 21

Query Evaluation Steps

Parse & Check QueryParse & Check Query

Decide how best to
answer query:

query optimization

Decide how best to
answer query:

query optimization

Query ExecutionQuery Execution

SQL query

Return Results

Check syntax,
access control,

table names, etc.

Check syntax,
access control,

table names, etc.

Query
Evaluation

Query
Evaluation

CSE 414 - Fall 2017 22

Logical plans,
Physical plans
Logical plans,
Physical plans

4b. Query Optimization

• main cost is disk access

• many logical plans, many physical plans
– logical plans are RA expressions with desired result

– physical plans include, e.g., choice of join algorithm
• hash, sorted merge, and (block refined) nested loop joins

• cost of many operations depends on selectivity

• optimization problem is hard
– saw SQL Server does poorly in homework problems

• realistic goal is to avoid really bad plans

CSE 414 - Fall 2017 23

4c. Transactions

• Goal: to allow many clients to run simultaneously
– OLTP workload: lots of clients with small read/writes

• need to provide ACID properties
– atomic: execute all SQL statements or none

– consistent: finish with all constraints satisfied

– isolation: behavior same as if one-at-a-time use

– durable: committed result are permanent (‘til changed)

• consistency maintained by checking constraints

• durability maintained by writing to disk(s)

CSE 414 - Fall 2017 24

5

4c. Transactions II

• isolation achieved through serializable schedules
– serializable means same behavior as a serial schedule

– conflict serializable means non-conflicting read/writes
can be swapped to make schedule serial

• stronger than (so implies) serializable

• locks ensure conflict serializability if 2PL used
– multiple read locks, only one write lock

• becomes 4 types in SQLite (a good design)

– lock granularity from (parts of) rows to tables to DB

– …

CSE 414 - Fall 2017 25

4c. Transactions III

– strict 2PL: no unlocks before commit/rollback
• needed for isolation if txns can roll back

– can produce deadlocks (as seen in homework)

– need more to prevent phantom rows
• phantom is a new row that shows up in a table

• predicate locks are one solution (but expensive)

• multi-version concurrency control is alternative

• default isolation level is usually not serializable
– faster perf but harder to write app (i.e., bugs likely)

CSE 414 - Fall 2017 26

Systems for Big Data

CSE 414 - Fall 2017 27

5a. NoSQL Systems

• goal to support heavy OLTP workloads

• provides simplified data model
– key-value pairs, documents, or extensible records

• limited support for transactions
– usually pair/document/record level

– (some support for record groups… all on one node)

• partition data across nodes for scale

• replicate data to survive node failures

CSE 414 - Fall 2017 28

5b. Parallel Processing Systems

• for OLAP workloads (big reads, no txns)

• MapReduce
– programming model is one-to-many map function,

shuffle sort (grouping), one-to-many reduce function

– no built-in RA operators
• but easy to implement, as shuffle sort is provided

– stores intermediate data on disk
• reasonable if input/output is also to disk (otherwise too slow)

– deals with stragglers by running backup map tasks

CSE 414 - Fall 2017 29

5b. Parallel Processing Systems II

• Spark/Scala
– executes a dataflow pipeline using many nodes

– Google Dataflow & Hyracks (AsterixDB) do same
• each provides extended RA operators

– Spark handles failure by re-computing, not
replicating

• Spark SQL
– map SQL ~> extended RA ~> dataflow pipeline

– same approach can be used on any dataflow engine

CSE 414 - Fall 2017 30

6

5b. Parallel Processing Systems III

• Existing systems do not optimize well
– none does real cost-based optimization

– Spark only performs small, syntactic optimizations
• one exception: choice of parallel vs. broadcast join

– Spark has no indexes

– AsterixDB has indexes, but no statistics

– all require manual tuning
• saw this with AsterixDB on homework

• PageRank

CSE 414 - Fall 2017 31

5c. Parallel Databases

• support both OLTP and OLAP

• goal: more nodes => faster or allow more data
– speed up or scale up

• different architectures
– shared memory (SQL Server etc.): limited scale

– shared disk (mostly Oracle): limited scale

– shared nothing: really scales (so our focus)
• won out in academic research (started in 1980s)

• basis for parallel processing systems (see previous slides)

CSE 414 - Fall 2017 32

5c. Parallel Databases II
• Partition data across nodes (hash, range, etc.)

• Query evaluation
– only one new element: reshuffle

• move tuples to nodes based on values in certain columns

• basically same as shuffle sort of MapReduce

• use to implement all extended RA operations

– linear speed up or scale up in principle

– in practice, stragglers are a problem (MapReduce tries to

discover and redo the tasks the stragglers are working on)

– new problem: skewed data
• may not all fit in memory of one node

33CSE 414 - Fall 2017

5c. Parallel Databases III

• AsterixDB is the closest we have seen to this
– came out of parallel DB community

– executes OLAP queries as in parallel processing

– but only has record-level transactions as in NoSQL
• (more OLTP than parallel processing systems though)

• More complete systems in the near future
– see also Google Spanner, Microsoft Cloud DB

CSE 414 - Fall 2017 34

SQL (Everywhere)

CSE 414 - Fall 2017 35

5. SQL

• CREATE TABLE …
– PRIMARY KEY, UNIQUE, FOREIGN KEY

– CHECK (constraints) on columns or tuples

• CREATE [CLUSTERED] INDEX … ON ...

• INSERT INTO …

• UPDATE … SET ... WHERE ...

• DELETE FROM ... WHERE …

CSE 414 - Fall 2017 36

7

5. SQL (cont.)

• SELECT …
– JOINs: inner vs. outer, natural

– GROUP BY, sum, count, avg, etc.

– ORDER BY

• SET ISOLATION LEVEL …

• BEGIN TRANSACTION

• COMMIT / ROLLBACK

CSE 414 - Fall 2017 37

