# Database Systems CSE 414 

Lectures 23-24: Design Theory<br>(Ch. 3.1, 3.3-4)

## Announcements

- HW6 will be due next Monday 11pm
- HW8 will be posted next Tuesday and due on Dec. 8, 11pm


## Database Design Process

Conceptual Model:



Relational Model:
Tables + constraints
And also functional dep.


Normalization:
Eliminates anomalies
Conceptual Schema


Physical storage details
Physical Schema


CSE 414 - Fall 2017

## What makes good schemas?



## Relational Schenad Design

| Name | $\underline{\text { SSN }}$ | $\underline{\text { PhoneNumber }}$ | City |
| :--- | :--- | :--- | :--- |
| Fred | $123-45-6789$ | $206-555-1234$ | Seattle |
| Fred | $123-45-6789$ | $206-555-6543$ | Seattle |
| Joe | $987-65-4321$ | $908-555-2121$ | Westfield |

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)
What is the problem with this schema?

## Relational Schema Design

| Name | SSN | $\underline{\text { PhoneNumber }}$ | City |
| :--- | :--- | :--- | :--- |
| Fred | $123-45-6789$ | $206-555-1234$ | Seattle |
| Fred | $123-45-6789$ | $206-555-6543$ | Seattle |
| Joe | $987-65-4321$ | $908-555-2121$ | Westfield |

## Anomalies:

- Redundancy

These can cause bugs!

- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?


## Relation Decomposition

## Break the relation into two:

|  | Name | SSN | PhoneNumber | City |
| :---: | :---: | :---: | :---: | :---: |
|  | Fred | 123-45-6789 | 206-555-1234 | Seattle |
|  | Fred | 123-45-6789 | 206-555-6543 | Seattle |
|  | Joe | 987-65-4321 | 908-555-2121 | Westfield |
| Name | SSN | City | SSN | PhoneNumber |
| Fred | 123-45-6789 | Seattle | 123-45-6789 | 206-555-1234 |
| Joe | 987-65-4321 | Westfield | 123-45-6789 | 206-555-6543 |
|  |  |  | 987-65-4321 | 908-555-2121 |

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)


## Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its functional dependencies (FDs)
- Use FDs to normalize the relational schema


## Functional Dependencies (FDs)

## Definition

If two tuples agree on the attributes

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

then they must also agree on the attributes


## Functional Dependencies (FDs)

Definition $F^{2} A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in $R$ if:
for every pair of tuples $t, t^{\prime} \in R$,
$\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1}\right.$ and $\ldots \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1}$ and $\ldots \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}$ )

if $t$, t' agree here then $t$, $\mathrm{t}^{\prime}$ agree here

## Example

An FD holds, or does not hold on an instance:

| EmpID | Name | Phone | Position |
| :--- | :--- | :--- | :--- |
| E0045 | Smith | 1234 | Clerk |
| E3542 | Mike | 9876 | Salesrep |
| E1111 | Smith | 9876 | Salesrep |
| E9999 | Mary | 1234 | Lawyer |

EmpID $\rightarrow$ Name, Phone, Position
Position $\rightarrow$ Phone
but not Phone $\rightarrow$ Position

## Example

| EmpID | Name | Phone | Position |
| :--- | :--- | :--- | :--- |
| E0045 | Smith | 1234 | Clerk |
| E3542 | Mike | $9876 \leftarrow$ | Salesrep |
| E1111 | Smith | $9876 \leftarrow$ | Salesrep |
| E9999 | Mary | 1234 | Lawyer |

Position $\rightarrow$ Phone

## Example

| EmpID | Name | Phone | Position |
| :--- | :--- | :--- | :--- |
| E0045 | Smith | $1234 \rightarrow$ | Clerk |
| E3542 | Mike | 9876 | Salesrep |
| E1111 | Smith | 9876 | Salesrep |
| E9999 | Mary | $1234 \rightarrow$ | Lawyer |

But not Phone $\rightarrow$ Position

## Example

> | name $\rightarrow$ color |
| :--- |
| category $\rightarrow$ department |
| color, category $\rightarrow$ price |

| name | category | color | department | price |
| :---: | :---: | :---: | :---: | :---: |
| Gizmo | Gadget | Green | Toys | 49 |
| Tweaker | Gadget | Green | Toys | 99 |

Do all the FDs hold on this instance?

## Example

$$
\begin{array}{|l}
\text { name } \rightarrow \text { color } \\
\text { category } \rightarrow \text { department } \\
\text { color, category } \rightarrow \text { price } \\
\hline
\end{array}
$$

| name | category | color | department | price |
| :---: | :---: | :---: | :---: | :---: |
| Gizmo | Gadget | Green | Toys | 49 |
| Tweaker | Gadget | Green | Toys | 49 |
| Gizmo | Stationary | Green | Office-supp. | 59 |

What about this one?

## Terminology

- FD holds or does not hold on an instance
- If we can be sure that every instance of $R$ will be one in which a given FD is true, then we say that $R$ satisfies the FD
- If we say that R satisfies an FD F, we are stating a constraint on $\mathbf{R}$ (part of schema)


## An Interesting Observation

If all these FDs are true: $\left.\begin{array}{l}\text { name } \rightarrow \text { color } \\ \text { category } \rightarrow \text { department } \\ \text { color, category } \rightarrow \text { price }\end{array}\right]$

Then this FD also holds: name, category $\rightarrow$ price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.

## Closure of a set of Attributes

Given a set of attributes $A_{1}, \ldots, A_{n}$,
The closure $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=$the set of attributes $B$ s.t. $A_{1}, \ldots, A_{n} \rightarrow B$

Example: 1. name $\rightarrow$ color
2. category $\rightarrow$ department
3. color, category $\rightarrow$ price

Closures:
name ${ }^{+}=$\{name, color\}
\{name, category\} ${ }^{+}=\{$name, category, color, department, price\}
color $^{+}=\{$color $\}$

## Closure Algorithm

$X=\{A 1, \ldots, A n\}$.
Repeat until X doesn't change do: if $B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and $B_{1}, \ldots, B_{n}$ are all in $X$ then $\operatorname{add} \mathrm{C}$ to X .

Example:

1. name $\rightarrow$ color
2. category $\rightarrow$ department
3. color, category $\rightarrow$ price
\{name, category\} ${ }^{+}=$
\{ name, category, color, department, price \}
Hence: name, category $\rightarrow$ color, department, price

## Example

In class:
$R(A, B, C, D, E, F)$

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & & \rightarrow \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$,
\}
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$, \}

## Example

In class:
$R(A, B, C, D, E, F)$

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & & \rightarrow \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$,

## Example

In class:
$R(A, B, C, D, E, F)$

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & & \rightarrow \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
What is a key of $R$ ?
CSE 414 - Fall 2017

## Practice at Home

Find all FD's implied by:

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}
$$

## Practice at Home

Find all FD's implied by:

$$
\begin{array}{lll|}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}
$$

Step 1: Compute $\mathrm{X}^{+}$, for every X :

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{A}, \mathrm{~B}^{+}=\mathrm{BD}, \mathrm{C}^{+}=\mathrm{C}, \mathrm{D}^{+}=\mathrm{D} \\
& \mathrm{AB}^{+}=\mathrm{ABCD}, \mathrm{AC}^{+}=\mathrm{AC}, \mathrm{AD}^{+}=\mathrm{ABCD}, \\
& \mathrm{BC}^{+}=\mathrm{BCD}, \mathrm{BD}^{+}=\mathrm{BD}, \mathrm{CD}^{+}=\mathrm{CD} \\
& \mathrm{ABC}^{+}=\mathrm{ABD}^{+}=\mathrm{ACD}^{+}=\mathrm{ABCD} \text { (no need to compute }- \text { why?) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \mathrm{ABCD}^{+}=\mathrm{ABCD}
\end{aligned}
$$

Step 2: Enumerate all FD's $X \rightarrow Y$ s.t. $Y \subseteq X^{+}$and $X \cap Y=\varnothing$ :
$A B \rightarrow C D, A D \rightarrow B C, A B C \rightarrow D, A B D \rightarrow C, A C D \rightarrow B$

## Keys

- A superkey is a set of attributes $A_{1}, \ldots, A_{n}$ s.t. for any other attribute $B$, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- superkey and for which no subset is a superkey


## Computing (Super)Keys

- For all sets X , compute $\mathrm{X}^{+}$
- If $X^{+}=$[all attributes], then $X$ is a superkey
- Try only the minimal X's to get the key


## Example

Product(name, price, category, color)

> | name, category $\rightarrow$ price |
| :--- |
| category $\rightarrow$ color |

What is the key?
\{name, category $\}+=\{$ name, category, price, color $\}$ Hence \{name, category\} is a (super)key

## Key or Keys?

Can we have more than one key?

Given $R(A, B, C)$, define FD's s.t. there are two or more keys

$$
\begin{aligned}
& \begin{array}{l}
A \rightarrow B \\
B \rightarrow C \\
C \rightarrow A
\end{array} \text { or } \begin{array}{l}
A B \rightarrow C \\
B C \rightarrow A
\end{array} \text { or } \begin{array}{l}
A \rightarrow B C \\
B \rightarrow A C
\end{array} \\
& \text { what are the keys here ? }
\end{aligned}
$$

## Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if $X$ is a (super)key
- $X \rightarrow A$ is not OK otherwise
- Need to decompose the table, but how?


## Boyce-Codd Normal Form

# Boyce-Codd Normal Form 

## Dr. Raymond F. Boyce

## Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation $R$ is in BCNF if:
Whenever $X \rightarrow A$ is a non-trivial dependency, then $X$ is a superkey.

Equivalently: Definition. A relation $R$ is in BCNF if: $\forall X$, either $X^{+}=X \quad$ or $\quad X^{+}=[$all attributes $]$

## BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq$[all attributes] if (not found) then " $R$ is in BCNF" let $Y=X^{+}-X ; \quad Z=[a l l ~ a t t r i b u t e s]-X^{+}$ decompose R into R1 $(\mathrm{X} \cup \mathrm{Y})$ and R2 $(\mathrm{X} \cup \mathrm{Z})$ Normalize(R1); Normalize(R2);


## Example

| Name | SSN | PhoneNumber | City |
| :--- | :--- | :--- | :--- |
| Fred | $123-45-6789$ | $206-555-1234$ | Seattle |
| Fred | $123-45-6789$ | $206-555-6543$ | Seattle |
| Joe | $987-65-4321$ | $908-555-2121$ | Westfield |
| Joe | $987-65-4321$ | $908-555-1234$ | Westfield |

## SSN $\rightarrow$ Name, City

The only key is: $\{S S N$, PhoneNumber\} Hence SSN $\rightarrow$ Name, City is a "bad" dependency


In other words:
SSN ${ }^{+}=$SSN, Name, City and is neither SSN nor All Attributes

## Example BCNF Decomposition

| Name | SSN | City | SSN $\rightarrow$ Name, City |
| :--- | :--- | :--- | :--- | :--- |
| Fred | $123-45-6789$ | Seattle |  |
| Joe | $987-65-4321$ | Westfield |  |

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq$[all attributes]

## Example BCNF Decomposition

Person(name, SSN, race, hairColor, phoneNumber)
SSN $\rightarrow$ name, race
race $\rightarrow$ hairColor


Find $X$ s.t.: $X \neq X^{+}$and $X^{+} \neq$[all attributes]

## Example BCNF Decomposition

Person(name, SSN, race, hairColor, phoneNumber) SSN $\rightarrow$ name, race
race $\rightarrow$ hairColor
Iteration 1: Person: SSN ${ }^{+}=$SSN, name, race, hairColor
Decompose into: P(SSN, name, race, hairColor)
Phone(SSN, phoneNumber)


Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq[$all attributes $]$

## Example BCNF Decomposition

Person(name, SSN, race, hairColor, phoneNumber)

| SSN $\rightarrow$ name, race | What are |
| :--- | :--- |
| race $\rightarrow$ hairColor | the keys ? |

Iteration 1: Person: SSN ${ }^{+}=$SSN, name, race, hairColor
Decompose into: P(SSN, name, race, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: race ${ }^{+}$= race, hairColor
Decompose: People(SSN, name, race)
Hair(race, hairColor)
Phone(SSN, phoneNumber)

Find $X$ s.t.: $X \neq X^{+}$and $X^{+} \neq$[all attributes]

## Example BCNF Decomposition

Person(name, SSN, race, hairColor, phoneNumber)
SSN $\rightarrow$ name, race
race $\rightarrow$ hairColor
Iteration 1: Person: SSN ${ }^{+}=$SSN, name, race, hairColor
Decompose into: P(SSN, name, race, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: race ${ }^{+}$= race, hairColor
Decompose: People(SSN, name, race)
Hair(race, hairColor)
Phone(SSN, phoneNumber)

R(A, B, C, D)

## Example: BCNF

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$



R(A, B, C, D)

## Example: BCNF

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

Recall: find $X$ s.t. $X \subsetneq X^{+} \subsetneq$ [all-attrs] R(A, B, C, D)

R(A, B, C, D)

## Example: BCNF

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

R(A, B, C, D)<br>$A^{+}=A B C \neq A B C D$

R(A, B, C, D)

## Example: BCNF

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$



R(A, B, C, D)

## Example: BCNF

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$



R(A, B, C, D)

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

## Example: BCNF



What happens if in R we first pick $\mathrm{B}^{+}$? $\operatorname{Or} \mathrm{AB}^{+}$?

## Decompositions in General


$S_{1}=$ projection of $R$ on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$
$S_{2}=$ projection of $R$ on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$

## Lossless Decomposition

name $\rightarrow$ price, but not category


## Lossy Decomposition

## What is lossy here?

| Name | Price | Category |
| :---: | :---: | :---: |
| Gizmo | 19.99 | Gadget |
| OneClick | 24.99 | Camera |
| Gizmo | 19.99 | Camera |


| Name | Category |
| :---: | :---: |
| Gizmo | Gadget |
| OneClick | Camera |
| Gizmo | Camera |


| Price | Category |
| :---: | :---: |
| 19.99 | Gadget |
| 24.99 | Camera |
| 19.99 | Camera |

CSE 414 - Fall 2017

## Lossy Decomposition



| Name | Category |
| :---: | :---: |
| Gizmo | Gadget |
| OneClick | Camera |
| Gizmo | Camera |


| Price | Category |
| :---: | :---: |
| 19.99 | Gadget |
| 24.99 | Camera |
| 19.99 | Camera |

CSE 414 - Fall 2017

## Decomposition in General



Let: $\quad S_{1}=$ projection of $R$ on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$ $S_{2}=$ projection of $R$ on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$
The decomposition is called lossless if $R=S_{1} \bowtie S_{2}$
Fact: If $A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}$ then the decomposition is lossless
It follows that every BCNF decomposition is lossless

## Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat (no list values)
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
- BCNF is lossless but can cause lose ability to check some FDs without a join (see book 3.4.4)
- 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF - i.e., they may have redundancy anomalies

