Database Systems CSE 414

Lectures 23-24: Design Theory
(Ch. 3.1, 3.3-4)

- HW8 will be posted next Tuesday and due on Dec. 8, 11pm

Announcements

- HW6 will be due next Monday 11 pm

Relational Schema Design

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)
What is the problem with this schema?

CSE 414 - Fall 2017
5

Relational Schema Design

Name	SSN	$\underline{\text { PhoneNumber }}$	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

These can cause bugs!
Anomalies:

- Redundancy = repeat data Worry most about later two.
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

Relation Decomposition				
Break the relation into two:				
	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone: - No more repeated data - Easy to move Fred to "Bellevue" (how ?) - Easy to delete all Joe's phone numbers (how ?)				

Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its functional dependencies (FDs)
- Use FDs to normalize the relational schema

Functional Dependencies (FDs)

Definition $F D A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if: for every pair of tuples $t, t^{\prime} \in R$,
$\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1}\right.$ and $\ldots \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1}$ and $\ldots \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}$)

CSE 414 - Fall 2017
10

Example				
			name \rightarrow col category \rightarrow color, catego	epartment \rightarrow price
name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	49
Gizmo	Stationary	Green	Office-supp.	59
What about this one ?		CSE 414 - Fall 2017		15

An Interesting Observation

Terminology

- FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- If we say that R satisfies an FD F, we are stating a constraint on \mathbf{R} (part of schema)

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n},
The closure $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=$the set of atributes B s.t. $A_{1}, \ldots, A_{n} \rightarrow B$

Example: 1. name \rightarrow color
2. category \rightarrow department

Closures:
3. color, category \rightarrow price
name ${ }^{+}=$\{name, color\}
\{name, category\} ${ }^{+}=$\{name, category, color, department, price\} color $^{+}=\{$color $\}$

Practice at Home

Find all FD's implied by:

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Step 1: Compute X^{+}, for every X :
$\mathrm{A}^{+}=\mathrm{A}, \mathrm{B}^{+}=\mathrm{BD}, \mathrm{C}^{+}=\mathrm{C}, \mathrm{D}^{+}=\mathrm{D}$
$A B^{+}=A B C D, A C^{+}=A C, A D^{+}=A B C D$,
$B C^{+}=B C D, B D^{+}=B D, C D^{+}=C D$
$A B C^{+}=A B D^{+}=A C D^{+}=A B C D$ (no need to compute - why?)
$B C D^{+}=B C D, A B C D^{+}=A B C D$
Step 2: Enumerate all FD's $X \rightarrow Y$ s.t. $Y \subseteq X^{+}$and $X \cap Y=\varnothing$: $A B \rightarrow C D, A D \rightarrow B C, A B C \rightarrow D, A B D \rightarrow C, A C D \rightarrow B$

Computing (Super)Keys

- For all sets X , compute X^{+}
- If $\mathrm{X}^{+}=$[all attributes], then X is a superkey
- Try only the minimal X's to get the key

Key or Keys?

Can we have more than one key?
Given $R(A, B, C)$, define FD's s.t. there are two or more keys

Boyce-Codd Normal Form

Dr. Raymond F. Boyce

CSE 414 - Fall 2017
30

There are no "bad" FDs:	yce-Codd Normal Form
	Definition. A relation R is in BCNF if: Whenever $X \rightarrow A$ is a non-trivial dependency, then X is a superkey.
Equivalently:	Definition. A relation R is in BCNF if: $\forall \mathrm{X}$, either $\mathrm{X}^{+}=\mathrm{X}$ or $\mathrm{X}^{+}=$[all attributes]
	CSE 414-Fall 2017 31

BCNF Decomposition Algorithm

Normalize (R)
find X s.t.: $X \neq X^{+}$and $X^{+} \neq$[all attributes]
find X s.t.: $X \neq X^{+}$and $X^{+} \neq$[all attributes]
if (not found) then " R is in BCNF"
let $Y=X^{+}-X ; \quad Z=[$ all attributes $]-X^{+}$
decompose R into R1 $(\mathrm{X} \cup \mathrm{Y})$ and R2 $(\mathrm{X} \cup \mathrm{Z})$
Normalize(R1); Normalize(R2);
 32

Example			
Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield
SSN \rightarrow Name, City The only key is: $\{\mathrm{SSN}$, PhoneNumber $\}$ Hence SSN \rightarrow Name, City is a "bad" dependency In other words: $\mathrm{SSN}^{+}=\mathrm{SSN}$, Name, City and is neither SSN nor All Attributes			
CSE 414 - Fall 2017 33			

Example BCNF Decomposition

Name	SSN	City	SSN \rightarrow Name, City
Fred	123-45-6789	Seattle	
Joe	987-65-4321	Westfield	
SSN	PhoneNumber		
123-45-6789	206-555-1234		
123-45-6789	206-555-6543		Let's check anomalies:
987-65-4321	908-555-2121		- Redundancy?
987-65-4321	908-555-1234		- Update?
			- Delete ?
		414 - Fall 2017	$7{ }^{34}$

Find X s.t.: $X \neq X^{+}$and $X^{+} \neq$[all attributes]

Example BCNF Decomposition

Person(name, SSN, race, hairColor, phoneNumber)
SSN \rightarrow name, race
race \rightarrow hairColor

35

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq$[all attributes]	
Example BCNF Decomposition	
Person(name, SSN, race, hairColor, phoneNumber)	
SSN \rightarrow name, race	
Iteration 1: Person: $\mathrm{SSN}^{+}=\mathrm{SSN}$, name, race, hairColor Decompose into: $\mathrm{P}($ SSN, name, race, hairColor) Phone(SSN, phoneNumber)	
Iteration 2: P : race $^{+}=$race, hairColor Decompose: People(SSN, name, race) Hair(race, hairColor) Phone(SSN, phoneNumber)	
CSE 414 - Fall 2017	${ }^{38}$

Let: $\quad S_{1}=$ projection of R on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$ $S_{2}=$ projection of R on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$
The decomposition is called lossless if $R=S_{1} \bowtie S_{2}$
Fact: If $A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}$ then the decomposition is lossless
It follows that every BCNF decomposition is lossless

Schema Refinements
 = Normal Forms

- 1st Normal Form = all tables are flat (no list values)
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
- BCNF is lossless but can cause lose ability to check some FDs without a join (see book 3.4.4)
- 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF - i.e., they may have redundancy anomalies

