
Database Systems
CSE 414

Lecture 20-21: Spark
(Ch. 23.1-2)

CSE 414 - Fall 2017 1

Spark

• Open source system from Berkeley
• Distributed processing over HDFS
• Differences from MapReduce:

– Multiple steps, including a fixed number of iterations
• E.g., running Spark SQL

– Stores intermediate results in main memory
– Supports SQL

• Details: http://spark.apache.org/examples.html

CSE 414 - Fall 2017 2

Spark Interface

• Spark supports a Scala interface
• Scala = ext of Java with lambda functions/closures

– will show Scala/Spark examples shortly…

• Spark also supports a SQL interface
• It compiles SQL into Scala
• For HW6: you only need the SQL interface!

CSE 414 - Fall 2017 3

RDD
• RDD = Resilient Distributed Datasets

– A distributed relation, together with its lineage
– Lineage = expression that says how that relation

was computed = a relational algebra plan
• Spark stores intermediate results as RDD
• If a server crashes, its RDD in main memory

is lost. However, the driver (=master node)
knows the lineage, and will simply re-
compute the lost partition of the RDD

CSE 414 - Fall 2017 4

Programming in Spark
• A Spark/Scala program consists of:

– Transformations (map, reduceByKey, join…). Lazy
• Construct a new RDD from a previous one
• Compute the new RDD at the first time it is used in an action

– Actions (count, reduce, save...). Eager
• Compute a result based on an RDD, and either return it to the

driver program or save it to an external storage system

• RDD[T] = an RDD collection of type T
– Partitioned, recoverable (through lineage), not nested

• Seq[T] = a Scala sequence
– Local to a server, may be nested

CSE 414 - Fall 2017 5

Example
Given a large log file hdfs://logfile.log, retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

lines = spark.textFile(“hdfs://logfile.log”);

errors = lines.filter(_.startsWith(“ERROR”));

sqlerrors = errors.filter(_.contains(“sqlite”));

sqlerrors.collect()

CSE 414 - Fall 2017 6

collect(): return all elements from the RDD. Should use only on a
small data set that can fit in a single machine’s memory

Example
Given a large log file hdfs://logfile.log, retrieve
all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

lines = spark.textFile(“hdfs://logfile.log”);

errors = lines.filter(_.startsWith(“ERROR”));

sqlerrors = errors.filter(_.contains(“sqlite”));

sqlerrors.collect()

Transformations
Not executed yet…
Transformations
Not executed yet…
Transformation:
Not executed yet…

Action:
triggers execution
of entire program

CSE 414 - Fall 2017 7

MapReduce Again…
Steps in Spark resemble MapReduce:
• rdd.filter(p) applies in parallel the predicate p

to all elements x of the partitioned collection /
RDD, and returns those x where p(x) = true
– E.g., rdd = {1, 2, 3, 3}. rdd.filter(x => x != 1) has

result {2, 3, 3}
• rdd.map(f) applies in parallel the function f to

all elements x of the partitioned collection /
RDD, and returns a new partitioned collection
– E.g., rdd = {1, 2, 3, 3}. rdd.map(x => x + 1) has

result {2, 3, 4, 4}
8CSE 414 - Fall 2017

Scala Primer
• Functions with one argument:

_.contains(“sqlite”)
_ > 6

• Functions with more arguments
(x => x.contains(“sqlite”))
(x => x > 6)
((x, y) => x+3*y)

• Closures (functions using one or more
variables declared outside the function):
var x = 5; rdd.filter(_ > x)
var s = “sqlite”; rdd.filter(x => x.contains(s))

9CSE 414 - Fall 2017

Persistence

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“ERROR”));
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

If any server fails before the end, then Spark must restart

CSE 414 - Fall 2017 10

Persistence

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“ERROR”));
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

filter(_.startsWith(“ERROR”))
filter(_.contains(“sqlite”))

RDD:

CSE 414 - Fall 2017 11

Persistence

If any server fails before the end, then Spark must restart

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“ERROR”));
errors.persist()
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

New RDD

hdfs://logfile.log

result

filter(_.startsWith(“ERROR”))
filter(_.contains(“sqlite”))

Spark can re-compute the result from errors

RDD:

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“ERROR”));
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

CSE 414 - Fall 2017 12

By default, an RDD is
re-computed each time
an action is run on it.
persist() can choose to
store an RDD’s content
in memory or on disk,
so the content can be
reused in multiple
actions.

Persistence

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

Spark can re-compute the result from errors

hdfs://logfile.log

errors

filter(_.startsWith(“ERROR”))

result

filter(_.contains(“sqlite”))

RDD:

filter(_.startsWith(“ERROR”))
filter(_.contains(“sqlite”))

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“ERROR”));
errors.persist()
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

New RDD

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“ERROR”));
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

CSE 414 - Fall 2017 13

Example

14

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A, B)
S(A, C)

R = spark.textFile(“R.csv”).map(parseRecord).persist()
S = spark.textFile(“S.csv”).map(parseRecord).persist()
RB = R.filter((a, b) => b > 200).persist()
SC = S.filter((a, c) => c < 100).persist()
J = RB.join(SC).persist()
J.count();

R

RB

filter((a, b) => b>200)

S

SC

filter((b, c) => c<100)

J

join

CSE 414 - Fall 2017

join(): inner join
between two
RDDs containing
key/value pairs

Programming in Spark

• A Spark/Scala program consists of:
– Transformations (map, reduceByKey, join…). Lazy
– Actions (count, reduce, save...). Eager

• RDD[T] = an RDD collection of type T
– Partitioned, recoverable (through lineage), not nested

• Seq[T] = a Scala sequence
– Local to a server, may be nested

CSE 414 - Fall 2017 15

Transformations:
map(f : T => U): RDD[T] => RDD[U]
flatMap(f: T => Seq[U]): RDD[T] => RDD[U]
filter(f: T => Bool): RDD[T] => RDD[T]
groupByKey(): RDD[(K, V)] => RDD[(K, Seq[V])]
reduceByKey(F: (V, V) => V): RDD[(K, V)] => RDD[(K, V)]
union(): (RDD[T], RDD[T]) => RDD[T]
join(): (RDD[(K, V)], RDD[(K, W)]) => RDD[(K, (V, W))]
cogroup(): (RDD[(K, V)], RDD[(K, W)]) => RDD[(K, (Seq[V], Seq[W]))]
cartesian(): (RDD[T], RDD[U]) => RDD[(T, U)]

Actions:
count(): RDD[T] => Long
collect(): RDD[T] => Seq[T]
reduce(f: (T, T) => T): RDD[T] => T
save(path:String): Outputs RDD to a storage system like HDFS

CSE 414 - Fall 2017 16

Example Transformations
• flatMap()

– Apply a function to each element in the RDD and return an RDD
consisting of the elements from all of the iterators

– E.g., rdd = {“a b”, “c d”}. rdd.flatMap(x => x.split(" ")) has result {“a”, “b”,
“c”, “d”}

• union()
– Produce an RDD containing elements from both RDDs
– E.g., rdd1 = {1, 2}, rdd2 = {2, 3}, rdd1.union(rdd2) has result {1, 2, 2, 3}

• cartesian()
– Cartesian product with the other RDD
– rdd1.crossProduct(rdd2) has result {(1, 2), (1, 3), (2, 2), (2, 3)}

CSE 414 - Fall 2017 17

Example Transformations – Cont.

For RDDs containing key/value pairs
E.g., rdd = {(1, 2), (3, 4), (3, 6)}, rdd2 = {(3, 9)}

• groupByKey()
– Group values with the same key
– rdd.groupByKey() has result {(1, [2]), (3, [4, 6])}

• reduceByKey()
– Combine values with the same key
– rdd.reduceByKey((x, y) => x + y) has result {(1, 2), (3, 10)}

CSE 414 - Fall 2017 18

Example Transformations – Cont.
For RDDs containing key/value pairs
E.g., rdd = {(1, 2), (3, 4), (3, 6)}, rdd2 = {(3, 9)}

• mapValues()
– Apply a function to each value of a key/value pair without

changing the key
– rdd.mapValues(x => x + 1) has result {(1, 3), (3, 5), (3, 7)}

• cogroup()
– Group data from both RDDs sharing the same key
– rdd.group(rdd2) has result {(1, ([2], [])), (3, ([4, 6], [9]))}

CSE 414 - Fall 2017 19

Example Actions

E.g., rdd = {1, 2, 3, 3}

• count()
– Number of elements in the RDD
– rdd.count() has result 4

• reduce()
– Combine the elements of the RDD together in parallel
– rdd.reduce((x, y) => x + y) has result 9

CSE 414 - Fall 2017 20

MapReduce ~> Spark

• input into an RDD
• map phase becomes .flatMap
• shuffle & sort becomes .groupByKey
• reduce becomes another .flatMap
• save output to HDFS

CSE 414 - Fall 2017 21

SQL ~> Spark
• You know enough to execute SQL on Spark!
• Idea: (1) SQL to RA + (2) RA on Spark

– = filter
– = map
– = groupByKey
– ⨉ = cartesian
– ⋈ = join

• Spark SQL does small optimizations to RA
• Also chooses between broadcast and parallel joins

CSE 414 - Fall 2017 22

PageRank

• PageRank is an algorithm that assigns to
each page a score, such that pages have
higher scores if more pages with high scores
link to them

• PageRank was introduced by Google, and
essentially defined Google

CSE 414 - Fall 2017 23

24

Purpose of PageRank

• Compute p(d), the prior probability of the
document d for retrieval purpose

• Not all Web pages are equally important
– E.g., pages on popular Web sites tend to be more

important
• Give weights to Web pages based on how

often they are hyperlinked by other Web pages
– Hyperlink = citation
– More citations more important

CSE 414 - Fall 2017

25

Model behind PageRank: Random Walk
• Imagine a Web surfer doing a random walk on

the Web
– Start at a random page
– At each step, go out of the current page along one

of the links on the page
• Each link is chosen with equal probability

• In the steady state, each page has a long-term
visit rate
– Called the page’s PageRank
– It does not matter where the surfer starts

• PageRank = long-term visit rate = steady state
probability

CSE 414 - Fall 2017

26

Random Walk – Cont.
• A Markov chain consists of N states + an

N×N transition probability matrix P
• state = page
• At each step, the Web surfer is on exactly

one page, say page i
• For 1 ≤ i, j ≤ N, the matrix entry Pij is the

probability of moving from page i to page j in
the next step

• For every i, di dj
Pij

CSE 414 - Fall 2017

27

Random Walk – Cont.

• Dead end: a Web page with no outgoing link
• r: the teleportation rate

– A parameter whose value is between 0 and 1
– Typical value: 0.15

• At a dead end (say page i), choose a
random Web page with equal probability 1/N
and jump to it
– Pij = 1/N for every j

CSE 414 - Fall 2017

28

Random Walk – Cont.
• At a non-dead end (say page i),

– With probability r, jump to a random web page
• to each page with a probability of r/N

– With the remaining probability 1-r, go out on a
random hyperlink

• Ci: the number of links going out of page i
• Go out on each of the Ci links with a probability of

(1-r)/Ci

, 	if	there	is	no	link	going	from	page	i	to	page	j

	
1

, if	there	is	a	link	going	from	page	i	to	page	j

CSE 414 - Fall 2017

29

Example Web Graph

d1

d5

d2 d3

d4

C1=3 (d2, d3, d5)
C2=2 (d1, d4)
C3=2 (d3, d5)
C4=0 (dead end)
C5=1 (d4)

CSE 414 - Fall 2017

30

Transition Probability
Matrix

d1 d2 d3 d4 d5

d1 5 5
1
3 5

1
3 5 5

1
3

d2 5
1
2 5 5 5

1
2 5

d3 5 5 5
1
2 5 5

1
2

d4
1
5

1
5

1
5

1
5

1
5

d5 5 5 5 5
1
1 5

d1

d5

d2 d3

d4

C1=3 (d2, d3,
d5)
C2=2 (d1, d4)
C3=2 (d3, d5)
C4=0 (dead
end)
C5=1 (d4)

CSE 414 - Fall 2017

31

Ergodicity Theorem
• Theorem in stochastic processes:
Web-graph+teleporting has a steady-
state probability distribution
 Each page in the Web-
graph+teleporting has a PageRank
• Steady state probability vector = (,
, …,)
– i is the long-term visit rate (or PageRank)

of page i

CSE 414 - Fall 2017

32

Probability Vector

• At a specific step, a probability (row)
vector X = (x1 , ..., xN) tells us where
the random walk is at
– The random walk is on page i with

probability xi

– ∑ 1
• Example:

– (0.1 0.2 0.3 0.15 0.25)
1 2 3 4 5

CSE 414 - Fall 2017

33

Change in Probability Vector

• If the probability vector in the current step is X
= (x1 , ..., xN), the probability vector in the next
step is XP
– In the next step, the random walk is on page j with

probability ∑ ·

CSE 414 - Fall 2017

34

Compute the Steady
State Probability Vector

• Suppose the distribution has reached the steady
state = (, , …,) in the current step

• The distribution in the next step is P, which
should also be in steady state

• So P
• Solving this matrix equation gives us

– is the principal left eigenvector for P
• i.e., the left eigenvector with the largest eigenvalue

CSE 414 - Fall 2017

35

Example of P

d1 d2 d3 d4 d5

d1 5 5
1
3 5

1
3 5 5

1
3

d2 5
1
2 5 5 5

1
2 5

d3 5 5 5
1
2 5 5

1
2

d4
1
5

1
5

1
5

1
5

1
5

d5 5 5 5 5
1
1 5

d1

d5

d2 d3

d4

+

CSE 414 - Fall 2017

36

Another Way of Writing P
• Assume no dead end for now
• Suppose pages T1, …, Tm have links to

page A
• C(Tj): the number of links going out of

page Tj

CSE 414 - Fall 2017

37

One Way of Computing the
PageRank

• Start with any distribution X
• E.g., uniform distribution
• After one step, we get XP
• After two steps, we get XP2

• After k steps, we get XPk

• Algorithm: multiply X by increasing
powers of P until convergence

• This is called the power method

CSE 414 - Fall 2017

PageRank

38

for i = 1 to N:
x[i] = 1/N

repeat
for j = 1 to N: contribs[j] = 0
for i = 1 to N:

k = links[i].length()
for j in links[i]:

contribs[j] += x[i] / k
for i = 1 to N: x[i] = contribs[i]

until convergence
/* usually 10-20 iterations */

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Repeat for a very long time

x[i] = prob. that we are at node i

CSE 414 - Fall 2017

PageRank

39

for i = 1 to N:
x[i] = 1/N

repeat
for j = 1 to N: contribs[j] = 0
for i = 1 to N:

k = links[i].length()
for j in links[i]:

contribs[j] += x[i] / k
for i = 1 to N: x[i] = contribs[i]

until convergence
/* usually 10-20 iterations */

x[i] = r/N + (1-r)*contribs[i]

where r ∈(0,1) is the teleportation rate

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Improvement: with small prob., a
restart at a random node.

CSE 414 - Fall 2017

PageRank

40

for i = 1 to N:
x[i] = 1/N

repeat
for j = 1 to N: contribs[j] = 0
for i = 1 to N:

k = links[i].length()
for j in links[i]:

contribs[j] += x[i] / k
for i = 1 to N: x[i] = r/N + (1-r)*contribs[i]

until convergence
/* usually 10-20 iterations */

// SPARK
val links = spark.textFile(..).map(..).persist()
var ranks = … // RDD of (URL, 1/n) pairs
for (k <- 1 to ITERATIONS) {

// Build RDD of (targetURL, float) pairs
// with contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>

links.map(dest => (dest, rank/links.size))
}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x, y) => x+y)

.mapValues(sum => a/n + (1-a)*sum)
}

links: RDD[url:string, links:SEQ[string]]
ranks: RDD[url:string, rank:float]

CSE 414 - Fall 2017

Google Dataflow

• Similar to Spark/Scala
• Allows you to lazily build pipelines and then

execute them

• Much simpler than multi-job MapReduce

CSE 414 - Fall 2017 41

Summary
• Parallel databases

– Pre-defined relational operators
– Optimization
– Transactions

• MapReduce
– User-defined map and reduce functions
– Must manually implement/optimize relational operators
– No updates/transactions

• Spark
– Pre-defined relational operators
– Must manually optimize
– No updates/transactions

42CSE 414 - Fall 2017

Summary cont.
• All of these technologies use dataflow engines:

– Google Dataflow (on top of MapReduce)
– Spark (on top of Hadoop)
– AsterixDB (on top of Hyracks)

• Spark & AsterixDB map SQL to a dataflow pipeline
– SQL ~> RA ~> dataflow operators (group, join, map)
– could do the same thing for Google Dataflow

• None of these systems optimize RA very well (as of 2015)
– Spark has no indexes
– AsterixDB has indexes, but no statistics

• Future work should improve that

43CSE 414 - Fall 2017

