Spark

- Open source system from Berkeley
- Distributed processing over HDFS
- Differences from MapReduce:
 - Multiple steps, including a fixed number of iterations
 - E.g., running Spark SQL
 - Stores intermediate results in main memory
 - Supports SQL
- Details: http://spark.apache.org/examples.html

Spark Interface

- Spark supports a Scala interface
- Scala = ext of Java with lambda functions/closures
 - will show Scala/Spark examples shortly...
- Spark also supports a SQL interface
- It compiles SQL into Scala
- For HW6: you only need the SQL interface!

RDD

- RDD = Resilient Distributed Datasets
 - A distributed relation, together with its lineage
 - Lineage = expression that says how that relation was computed = a relational algebra plan
- Spark stores intermediate results as RDD
- If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the lineage, and will simply re-compute the lost partition of the RDD

Programming in Spark

- A Spark/Scala program consists of:
 - Transformations (map, reduceByKey, join…). Lazy
 - Construct a new RDD from a previous one
 - Compute the new RDD at the first time it is used in an action
 - Actions (count, reduce, save…). Eager
 - Compute a result based on an RDD, and either return it to the driver program or save it to an external storage system
- RDD[T] = an RDD collection of type T
 - Partitioned, recoverable (through lineage), not nested
- Seq[T] = a Scala sequence
 - Local to a server, may be nested

Example

Given a large log file hdfs://logfile.log, retrieve all lines that:
- Start with “ERROR”
- Contain the string “sqlite”

```scala
collect(): return all elements from the RDD. Should use only on a small data set that can fit in a single machine’s memory

```
Example
Given a large log file hdfs://logfile.log, retrieve all lines that:
- Start with “ERROR”
- Contain the string “sqlite”

lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()

MapReduce Again...
Steps in Spark resemble MapReduce:
- rdd.filter(p) applies in parallel the predicate p to all elements x of the partitioned collection / RDD, and returns those x where p(x) = true
 - E.g., rdd = {1, 2, 3, 3}. rdd.filter(x => x != 1) has result {2, 3, 3}
- rdd.map(f) applies in parallel the function f to all elements x of the partitioned collection / RDD, and returns a new partitioned collection
 - E.g., rdd = {1, 2, 3, 3}. rdd.map(x => x + 1) has result {2, 3, 4, 4}

Scala Primer
- Functions with one argument:
 - _.contains("sqlite")
 - _ > 6
- Functions with more arguments
 - (x => x.contains("sqlite"))
 - (x => x > 6)
 - ((x, y) => x+3*y)
- Closures (functions using one or more variables declared outside the function):
 - var x = 5; rdd.filter(_ > x)
 - var s = "sqlite"; rdd.filter(x => x.contains(s))

Persistence
- If any server fails before the end, then Spark must restart
 - lines = spark.textFile("hdfs://logfile.log");
 - errors = lines.filter(_.startsWith("ERROR"));
 - sqlerrors = errors.filter(_.contains("sqlite"));
 - sqlerrors.collect()
Persistence

If any server fails before the end, then Spark must restart.

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR")).filter(_.contains("sqlite")).collect()
```

Spark can re-compute the result from errors.

Example

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR")).filter(_.contains("sqlite")).collect()
```

Programming in Spark

- A Spark/Scala program consists of:
 - Transformations (map, reduceByKey, join...). Lazy
 - Actions (count, reduce, save...). Eager
- `RDD[T]` = an RDD collection of type T
 - Partitioned, recoverable (through lineage), not nested
 - `Seq[T]` = a Scala sequence
 - Local to a server, may be nested

Example Transformations

- `flatMap()`
 - Apply a function to each element in the RDD and return an RDD consisting of the elements from all of the iterators
 - E.g., `rdd = \{"a b", "c d"\}`. `rdd.flatMap(x => x.split(\"\"))` has result `\{"a", "b", "c", "d"\}`
- `union()`
 - Produce an RDD containing elements from both RDDs
 - E.g., `rdd1 = \{1, 2\}`, `rdd2 = \{2, 3\}`, `rdd1.union(rdd2)` has result \{1, 2, 2, 3\}
- `cartesian()`
 - Cartesian product with the other RDD
 - `rdd1.cartesian(rdd2)` has result \{\{(1, 2), (1, 3), (2, 2), (2, 3)\}\}

Example Transformations – Cont.

- Group values with the same key
 - `rdd.groupByKey()` has result \{\{(1, 2), (3, 4), (3, 6)\}\}
- Combine values with the same key
 - `rdd.reduceByKey(x => x + y)` has result `\{(1, 2), (3, 10)\}`
Example Transformations – Cont.

For RDDs containing key/value pairs
E.g., rdd = {(1, 2), (3, 4), (3, 6)}, rdd2 = {(3, 9)}

- mapValues()
 - Apply a function to each value of a key/value pair without changing the key
 - rdd.mapValues(x => x + 1) has result {(1, 3), (3, 5), (3, 7)}

- cogroup()
 - Group data from both RDDs sharing the same key
 - rdd.group(rdd2) has result {(1, ([2], [])), (3, ([4, 6], [9]))}

Example Actions

E.g., rdd = {1, 2, 3, 3}

- count()
 - Number of elements in the RDD
 - rdd.count() has result 4

- reduce()
 - Combine the elements of the RDD together in parallel
 - rdd.reduce((x, y) => x + y) has result 9

MapReduce ~> Spark

- input into an RDD
- map phase becomes .flatMap
- shuffle & sort becomes .groupByKey
- reduce becomes another .flatMap
- save output to HDFS

SQL ~> Spark

- You know enough to execute SQL on Spark!
- Idea: (1) SQL to RA + (2) RA on Spark
 - σ = filter
 - π = map
 - γ = groupByKey
 - × = cartesian
 - ⋈ = join
- Spark SQL does small optimizations to RA
- Also chooses between broadcast and parallel joins

PageRank

- PageRank is an algorithm that assigns to each page a score, such that pages have higher scores if more pages with high scores link to them
- PageRank was introduced by Google, and essentially defined Google

Purpose of PageRank

- Compute $\rho(d)$, the prior probability of the document d for retrieval purpose
- Not all Web pages are equally important
 - E.g., pages on popular Web sites tend to be more important
- Give weights to Web pages based on how often they are hyperlinked by other Web pages
 - Hyperlink = citation
 - More citations \Rightarrow more important
Model behind PageRank: Random Walk

- Imagine a Web surfer doing a random walk on the Web
 - Start at a random page
 - At each step, go out of the current page along one of the links on the page
 - Each link is chosen with equal probability
- In the steady state, each page has a long-term visit rate
 - Called the page’s PageRank
 - It does not matter where the surfer starts
- PageRank = long-term visit rate = steady state probability

Random Walk – Cont.

- A Markov chain consists of N states + an $N \times N$ transition probability matrix P
 - state = page
 - At each step, the Web surfer is on exactly one page, say page i
 - For $1 \leq i, j \leq N$, the matrix entry P_{ij} is the probability of moving from page i to page j in the next step
 - For every i, $\sum_{j=1}^{N} P_{ij} = 1$

Random Walk – Cont.

- Dead end: a Web page with no outgoing link
- r: the teleportation rate
 - A parameter whose value is between 0 and 1
 - Typical value: 0.15
 - At a dead end (say page i), choose a random Web page with equal probability $1/N$ and jump to it
 - $P_{ij} = 1/N$ for every j

Example Web Graph

- $C_1 = 3$ (d_2, d_3, d_5)
- $C_2 = 2$ (d_1, d_4)
- $C_3 = 2$ (d_3, d_5)
- $C_4 = 0$ (dead end)
- $C_5 = 1$ (d_4)

Transition Probability Matrix

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>$r \frac{1-r}{2}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
</tr>
<tr>
<td>d_2</td>
<td>$\frac{r}{5}$</td>
<td>$r - \frac{1-r}{2}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
</tr>
<tr>
<td>d_3</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$r - \frac{1-r}{2}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
</tr>
<tr>
<td>d_4</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$r - \frac{1-r}{2}$</td>
<td>$\frac{r}{5}$</td>
</tr>
<tr>
<td>d_5</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$\frac{r}{5}$</td>
<td>$r - \frac{1-r}{2}$</td>
</tr>
</tbody>
</table>
Ergodicity Theorem

• Theorem in stochastic processes: Web-graph+teleporting has a steady-state probability distribution

⇒ Each page in the Web-graph+teleporting has a PageRank

• Steady state probability vector \(\pi = (\pi_1, \pi_2, ..., \pi_n) \)

– \(\pi_i \) is the long-term visit rate (or PageRank) of page \(i \)

Probability Vector

• At a specific step, a probability (row) vector \(X = (x_1, ..., x_n) \) tells us where the random walk is at

– The random walk is on page \(i \) with probability \(x_i \)

– \(\sum_{i=1}^{n} x_i = 1 \)

• Example:

\[
\begin{pmatrix}
0.1 & 0.2 & 0.3 & 0.15 & 0.25
\end{pmatrix}
\]

Change in Probability Vector

• If the probability vector in the current step is \(X = (x_1, ..., x_n) \), the probability vector in the next step is \(XP \)

– In the next step, the random walk is on page \(j \) with probability \(\sum_{i=1}^{n} x_i \cdot P_{ij} \)

\
\[
\begin{pmatrix}
x_1 & \ldots & x_n
\end{pmatrix}
= \begin{pmatrix}
P_{1j} & \ldots & P_{nj}
\end{pmatrix}
\]

Compute the Steady State Probability Vector

• Suppose the distribution has reached the steady state \(\pi = (\pi_1, \pi_2, ..., \pi_n) \) in the current step

• The distribution in the next step is \(\pi P \), which should also be in steady state

• So \(\pi = \pi P \)

• Solving this matrix equation gives us \(\pi \)

– \(\pi \) is the principal left eigenvector for \(P \)

• i.e., the left eigenvector with the largest eigenvalue

Another Way of Writing \(\pi = \pi P \)

• Assume no dead end for now

• Suppose pages \(T_1, ..., T_m \) have links to page \(A \)

• \(C(T_i) \): the number of links going out of page \(T_i \)

\[
\text{PageRank}(A) = \frac{r}{N} \sum_{i=1}^{m} \left[\frac{\text{PageRank}(T_i)}{C(T_i)} \right]
\]
One Way of Computing the PageRank

- Start with any distribution X
- E.g., uniform distribution

After one step, we get XP

After two steps, we get XP^2

After k steps, we get XP^k

Algorithm: multiply X by increasing powers of P until convergence

This is called the power method

PageRank

for $i = 1$ to N:

\[x_i^{(0)} = \frac{1}{N} \]

repeat

for $j = 1$ to N:

\[\text{contribs}[j] = 0 \]

for $i = 1$ to N:

\[k = \text{links}[i].\text{length()} \]

for j in links[i]:

\[\text{contribs}[j] += x_i / k \]

for $i = 1$ to N:

\[x_i = \text{contribs}[i] \]

until convergence

/* usually 10-20 iterations */

Random walk interpretation:

- Start at a random node i
- At each step, randomly choose an outgoing link and follow it.

Improvement: with small prob., a restart at a random node.

\[x_i^{(n)} = r \times \frac{1}{N} + (1-r) \times \text{contribs}[i] \]

where $r \in (0, 1)$ is the teleportation rate

Google Dataflow

- Similar to Spark/Scala
- Allows you to lazily build pipelines and then execute them
- Much simpler than multi-job MapReduce

Summary

- Parallel databases
 - Pre-defined relational operators
 - Optimization
 - Transactions
- MapReduce
 - User-defined map and reduce functions
 - Must manually implement/optimize relational operators
 - No updates/transactions
- Spark
 - Pre-defined relational operators
 - Must manually optimize
 - No updates/transactions
Summary cont.

- All of these technologies use **dataflow engines**:
 - Google Dataflow (on top of MapReduce)
 - Spark (on top of Hadoop)
 - AsterixDB (on top of Hyracks)
- Spark & AsterixDB map SQL to a dataflow pipeline
 - SQL → RA → dataflow operators (group, join, map)
 - could do the same thing for Google Dataflow
- None of these systems optimize RA very well (as of 2015)
 - Spark has no indexes
 - AsterixDB has indexes, but no statistics
- Future work should improve that