
10/18/2017

1

Database Systems
CSE 414

Lecture 11: NoSQL & JSON

(mostly not in textbook…

only Ch 11.1)

CSE 414 - Fall 2017 1

Announcements

• HW5 will be posted on Friday and due on
Nov. 14, 11pm

• [No Web Quiz 5]

• Today’s lecture:
– NoSQL & JSON

– The book covers XML instead (11.1-11.3, 12.1)

CSE 414 - Fall 2017 2

NoSQL

CSE 414 - Fall 2017 3

NoSQL Motivation

• Originally motivated by Web 2.0 applications

• Goal is to scale simple OLTP-style workloads
to millions or billions of users
– Ex: Facebook has 1.2B daily active users

• use often correlated in time in each region

• > 10M req/sec if 25% of users arrive within one hour

• SQL Server would collapse under that workload

• Users are doing both updates and reads

CSE 414 - Fall 2017 4

What is the Problem?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for the entire functionality of DBMS
– as we will see next…

• NoSQL: reduce functionality for easier scaling
– Simpler data model

– Fewer guarantees

CSE 414 - Fall 2017 5

Serverless Architecture

CSE 414 - Fall 2017 6

UserUser
SQLite:
• One data file
• One user
• One DBMS application

• Scales well!
• But only a limited number of

scenarios work with such model
• (Can be in browser / phone!)

DBMS
Application

(SQLite)

File

DesktopDesktop

Data fileData file

DiskDisk

10/18/2017

2

Client-Server Architecture

Server MachineServer Machine

Connection (JDBC, ODBC)

7

Client
Applications

Client
Applications

• One server running the database

• Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

Supports many apps and
many users simultaneously
Supports many apps and
many users simultaneously

DB Server

File 1

File 2

File 3

CSE 414 - Fall 2017 8

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

• Clients “talk” to server using JDBC/ODBC
protocol

CSE 414 - Fall 2017

3-Tiered Architecture

DB Server

File 1

File 2

File 3

9

BrowserBrowser

CSE 414 - Fall 2017

3-Tiered Architecture

DB Server

File 1

File 2

File 3

10

App+Web Server

Web-based applicationsWeb-based applications

Connection

(e.g., JDBC)

HTTP/SSL

BrowserBrowser

CSE 414 - Fall 2017

3-Tiered Architecture

DB Server

File 1

File 2

File 3

11

Why don’t we replicate
the DB server too?
Why don’t we replicate
the DB server too?

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Replicate
App server
for scaleup

Replicate
App server
for scaleup

CSE 414 - Fall 2017

Replicating the Database

• Much harder because the state must be
unique. In other words, the database must act
as a whole
– Current DB instance must always be consistent

• Ex: foreign keys must exist

• as a result, some updates must occur simultaneously

• Two basic approaches:
– Scale up through partitioning

– Scale up through replication

CSE 414 - Fall 2017 12

10/18/2017

3

Scale Through Partitioning

• Partition the database across many machines in a cluster
– Database could fit in main memory

– Queries spread across these machines

• Can increase throughput

• Easy for (simple) writes but reads become harder

CSE 414 - Fall 2017 13

Transaction
starts here Also touches

data here

Three partitions

Scale Through Replication

• Create multiple copies of each database partition

• Spread queries across these replicas

• Can increase throughput and lower latency

• Can also improve fault-tolerance

• Easy for reads but writes become harder

CSE 414 - Fall 2017 14

Some
requests

Other
requests

Three replicas

NoSQL Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

CSE 414 - Fall 2017 15

☞

Key-Value Stores Features
• Data model: (key, value) pairs

– Key = string/integer, unique for the entire data

– Value = can be anything (very complex object)

• Operations
– Get(key), Put(key, value)

– Operations on value not supported

• Distribution / Partitioning
– No replication: key k is stored at server h(k)

– 3-way replication: key k is stored at h1(k), h2(k), h3(k)

How does get(k) work? How does put(k, v) work?How does get(k) work? How does put(k, v) work?

CSE 414 - Fall 2017 16

Example

• How would you represent the Flights data as (key,
value) pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin, dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?How does query processing work?

CSE 414 - Fall 2017 17

Key-Value Stores Internals

• Data remains in main memory
– one implementation: distributed hash table

• Most systems also offer a persistence option

• Others use replication to provide fault-tolerance
– Asynchronous or synchronous replication

– Tunable consistency: read/write one replica or majority

• Some offer transactions, others do not
– multi-version concurrency control or locking

• No secondary indices

CSE 414 - Fall 2017 18

10/18/2017

4

Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

CSE 414 - Fall 2017 19

☞

Document Stores Features

• Data model: (key, document) pairs
– Key = string/integer, unique for the entire data

– Document = JSON or XML

• Operations
– Get/put document by key

– Limited, non-standard query language on JSON

• Distribution / Partitioning
– Entire documents, as for key/value pairs

We will discuss JSon today or tomorrowWe will discuss JSon today or tomorrow

CSE 414 - Fall 2017 20

Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

CSE 414 - Fall 2017 21

☞

Extensible Record Stores

• Based on Google’s BigTable
– HBase is an open source implementation of BigTable

• Data model is rows and columns
– can add both new rows and new columns

• Scalability by splitting rows and columns over nodes
– Rows partitioned through hashing on primary key

– Columns of a table are distributed over multiple nodes by
using “column groups”

CSE 414 - Fall 2017 22

NoSQL Summary

• Simpler data model with weaker guarantees

• But they scale as far as we need them to

• Meanwhile…
SQL systems continue to improve

CSE 414 - Fall 2017 23

Recent SQL Progress

• Modern systems need to store data across the globe
– individual data centers go offline

– need servers close to users to be efficient

• Speed of light is a fundamental limit
– 200+ms latency (across US) is visible to users

• Systems must weaken guarantees

• Google’s Spanner (supports SQL):

– write data over the whole globe (a bit slowly)

– reads occur slightly in the past
CSE 414 - Fall 2017 24

10/18/2017

5

Prediction

• My guess: SQL will win again

• Pieces are out there already
– Spanner: multi-node transactions

– AsterixDB: multi-node query optimization

• For now, NoSQL still offers key benefits

CSE 414 - Fall 2017 25

JSon and Semi-structured Data

CSE 414 - Fall 2017 26

Where We Are

• So far we have studied the relational data model
– Data is stored in tables (relations)

– Queries are expressions in the SQL / Datalog /
relational algebra

• Today: Semi-structured data model
– Popular formats today: XML, JSon, protobuf

CSE 414 - Fall 2017 27

JSON

• 10 years ago…
– JavaScript interpreters were very slow

– native browser function parsed JSON 100x faster

• XML was also an option, but
– IE had a memory leak in its XML parser

• JSON used in Gmail etc. for this reason

• Spread organically to server-side systems

CSE 414 - Fall 2017 28

JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

• The filename extension is .json.

CSE 414 - Fall 2017 29

We will emphasize JSon as semi-structured dataWe will emphasize JSon as semi-structured data

JSon vs. Relational

• Relational data model
– Rigid flat structure (tables)

– Schema must be fixed in advanced

– Binary representation: good for performance, bad for exchange

– Query language based on Relational Calculus

• Semi-structured data model / JSon
– Flexible, nested structure (trees)

– Does not require predefined schema ("self describing”)

– Text representation: good for exchange, bad for performance

– Most common use: Language API; query languages emerging

CSE 414 - Fall 2017 30

10/18/2017

6

31

JSon Syntax
{ "book": [

{"id": “01",

"language": "Java”,

"author": ”H. Javeson”,

“year”: 2015

},

{"id": "07",

"language": "C++",

"edition": "second"

"author": "E. Sepp”,

“price”: 22.25

}

]

}

{ "book": [

{"id": “01",

"language": "Java”,

"author": ”H. Javeson”,

“year”: 2015

},

{"id": "07",

"language": "C++",

"edition": "second"

"author": "E. Sepp”,

“price”: 22.25

}

]

}

CSE 414 - Fall 2017

JSon Terminology

• Curly braces hold objects
– Each object is a list of name/value pairs separated

by , (comma)

– Each pair is a name is followed by ':’ (colon)
followed by the value

• Square brackets hold arrays and values are
separated by , (comma).

• Data made up of objects, lists, and atomic
values (integers, floats, strings, booleans).

CSE 414 - Fall 2017 32

JSon Data Structures

• Collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}

– The “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]

CSE 414 - Fall 2017 33

Avoid Using Duplicate Keys

CSE 414 - Fall 2017 34

{"id":"07",

”title": “Databases”,

"author": “Garcia-Molina”,

"author": “Ullman”,

"author": “Widom”

}

{"id":"07",

”title": “Databases”,

"author": “Garcia-Molina”,

"author": “Ullman”,

"author": “Widom”

}

{"id":"07",

"title": “Databases”,

"author": [“Garcia-Molina”,

“Ullman”,

“Widom”]

}

{"id":"07",

"title": “Databases”,

"author": [“Garcia-Molina”,

“Ullman”,

“Widom”]

}

The standard allows them, but many implementations don’t

JSon Data Types

• Number

• String = double-quoted

• Boolean = true or false

• null / empty

CSE 414 - Fall 2017 35 36

JSon Semantics: a Tree !

person

Mary

name address

name
address

street no city

Maple 345 Seattle

John

Thailand

phone

2345678

{“person”:

[{“name”: “Mary”,

“address”:
{“street”: “Maple”,
“no”: 345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”: 2345678}

]

}

{“person”:

[{“name”: “Mary”,

“address”:
{“street”: “Maple”,
“no”: 345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”: 2345678}

]

}

CSE 414 - Fall 2017

10/18/2017

7

37

JSon Data

• JSon is self-describing

• Schema elements become part of the data
– Relational schema: person(name, phone)

– In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

• Consequence: JSon is much more flexible
– also uses more space (but can be compressed)

• JSon is an example of semi-structured data

CSE 414 - Fall 2017

