Database Systems CSE 414

Lectures 8: Relational Algebra (Ch. 2.4, & 5.1)

Announcements

- WQ4 is posted and due on Nov. 3, 11pm
- HW2 will be due next Monday 11pm

- Log into Azure web site using your outlook.com email address today if you have not done so already
 - Otherwise the TA cannot give you the Azure access code

Where We Are

- Motivation for using a DBMS for managing data
- SQL:
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

Query Evaluation Steps

SQL query Parse & Check Query Check syntax, Translate query access control, string into internal table names, etc. representation Decide how best to answer query: query optimization Logical plan → physical plan Query **Query Execution Evaluation** Return Results CSE 414 - Fall 2017

The WHAT and the HOW

- SQL = WHAT we want to get from the data
- Relational Algebra = HOW to get the data we want
- Move from WHAT to HOW is query optimization
 - SQL ~> Relational Algebra ~> Physical Plan
 - Relational Algebra = Logical Plan

Relational Algebra

Sets vs. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

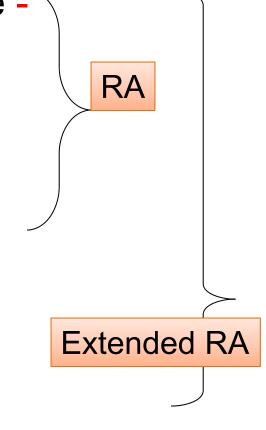
Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

Relational Algebra Operators

- Union ∪, intersection ∩, difference -
- Selection σ
- Projection $\pi(\Pi)$
- Cartesian product ×, join ⋈
- Rename p
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ



Union and Difference

 $R1 \cup R2$

R1 - R2

What do they mean over bags?

What about Intersection?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

Selection

Returns all tuples that satisfy a condition

$$\sigma_{c}(R)$$

- Examples
 - $-\sigma_{\text{Salary} > 40000}$ (Employee)
 - $-\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be =, <, ≤, >, ≥, <> combined with AND, OR, NOT

Employee

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

$\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

Projection

Eliminates columns

$$\pi_{A1,...,An}(R)$$

- Example: project social-security number and names:
 - Π _{SSN, Name} (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

 π $_{\text{Name, Salary}}$ (Employee)

Name	Salary
John	20000
John	60000
John	20000

Name	Salary
John	20000
John	60000

Bag semantics

Set semantics

Which is more efficient?

Composing RA Operators

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

$$\pi_{zip, disease}(Patient)$$

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

$$\pi_{zip, disease} (\sigma_{disease='heart'}(Patient))$$

zip	disease
98125	heart
98120	heart

Cartesian Product

Each tuple in R1 with each tuple in R2

$$R1 \times R2$$

Rare in practice; mainly used to express joins

Cross-Product Example

Employee

Name	SSN	
John	99999999	
Tony	77777777	

Dependent

EmpSSN	DepName
99999999	Emily
77777777	Joe

Employee × **Dependent**

Name	SSN	EmpSSN	DepName
John	99999999	99999999	Emily
John	99999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Renaming

Changes the schema, not the instance

- Example:
 - $-\rho_{N,S}$ (Employee) \rightarrow Answer(N, S)

Not really used by systems, but needed on paper

Natural Join

 $R1 \bowtie R2$

- Meaning: R1 \bowtie R2 = $\pi_A(\sigma_\theta(R1 \times R2))$
- Where:
 - Selection σ checks equality of all common attributes (attributes with same names)
 - Projection π eliminates duplicate common attributes

Natural Join Example

R

Α	В
X	Υ
X	Z
Υ	Z
Z	V

S

В	С
Z	U
V	W
Z	V

 $R \bowtie S =$

$$\pi_{A,B,C}(\sigma_{R.B=S.B}(R \times S))$$

Α	В	С
X	Z	U
X	Z	V
Υ	Z	U
Υ	Z	V
Z	V	W

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E),
 what is the schema of R ⋈ S?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E), what is R \bowtie S?
 - (A, B, C, D, E) through cross product
- Given R(A, B), S(A, B), what is $R \bowtie S$?
 - (A, B) through intersection

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Theta Join

A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/patients example:

Equijoin

- A theta join where θ is an equality predicate
- By far the most used variant of join in practice

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$$P\bowtie_{P.age=V.age}V$$

P.age	P.zip	P.disease	P.name	V.zip	V.age
54	98125	heart	p1	98125	54
20	98120	flu	p2	98120	20

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ
- Equijoin: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join condition θ consists only of equalities
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
 - Projection π_A drops all redundant attributes

So Which Join Is It?

When we write $R \bowtie S$, we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Does not eliminate duplicate columns

Variants

- Left outer join
- Right outer join
- Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

 $P \bowtie J$

P.age	P.zip	disease	job	J.age	J.zip
54	98125	heart	lawyer	54	98125
20	98120	flu	cashier	20	98120
33	98120	lung	null	null	null

More Examples

```
Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supply(sno, pno, qty, price)
```

Name of supplier of parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \text{ (Part)})$

Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \ (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \ (\text{Part}) \)$