Database Systems CSE 414

Lectures 8: Relational Algebra (Ch. 2.4, & 5.1)

CSE 414 - Fall 2017

Announcements

- · WQ4 is posted and due on Nov. 3, 11pm
- · HW2 will be due next Monday 11pm
- Log into Azure web site using your outlook.com email address today if you have not done so already
 - Otherwise the TA cannot give you the Azure access code

CSE 414 - Fall 2017

II 2017

Where We Are

- · Motivation for using a DBMS for managing data
- SQI
- Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

CSE 414 - Fall 2017

Query Evaluation Steps SQL query Parse & Check Query Check syntax, access control, Translate query string into internal representation table names, etc. Decide how best to answer query: query optimization Logical plan → physical plan **Query Execution** Query Evaluation Return Results CSE 414 - Fall 2017

The WHAT and the HOW

- SQL = WHAT we want to get from the data
- Relational Algebra = HOW to get the data we want
- Move from WHAT to HOW is query optimization
 - SQL ~> Relational Algebra ~> Physical Plan
 - Relational Algebra = Logical Plan

CSE 414 - Fall 2017

5

Relational Algebra

CSE 414 - Fall 2017

Sets vs. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

CSE 414 - Fall 2017

Relational Algebra Operators

• Union \cup , intersection \cap , difference • Selection σ • Projection π (Π)
• Cartesian product \times , join \bowtie • Rename ρ • Duplicate elimination δ • Grouping and aggregation γ • Sorting τ

Union and Difference

 $R1 \cup R2$ R1 - R2

What do they mean over bags?

CSE 414 - Fall 2017

What about Intersection?

· Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

• Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

CSE 414 - Fall 2017

Selection

· Returns all tuples that satisfy a condition

 $\sigma_{\rm c}(R)$

- Examples
 - $-\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be =, <, ≤, >, ≥, <> combined with AND, OR, NOT

CSE 414 - Fall 2017

11

Employee	SSN	Name	Salary
	1234545	John	20000
	5423341	Smith	60000
	4352342	Fred	50000

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

CSE 414 - Fall 2017

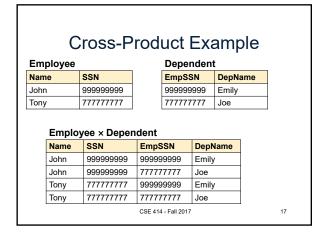
12

Projection

· Eliminates columns

$$\pi_{A1,...,An}(R)$$

- Example: project social-security number and names:
 - Π _{SSN, Name} (Employee)
 - Answer(SSN, Name)


Different semantics over sets or bags! Why?

CSE 414 - Fall 2017

Employee	SSN	Name	Salary
	1234545	John	20000
	5423341	John	60000
	4352342	John	20000
π _{Name, Salary} (Employee)			
Name	Salary	Name	Salary
John	20000	John	20000
John	60000	John	60000
John	20000		
Bag semantics		Set	semantics
Which is more efficient?			

Composing RA Operators $\pi_{\text{zip, disease}}(\text{Patient})$ Patient no name zip disease zip disease 98125 flu 98125 flu p2 98125 heart 98125 heart рЗ 98120 lung 98120 lung 98120 heart 98120 $\sigma_{\text{disease='heart'}}(\text{Patient})$ $\pi_{\text{zip, disease}}\left(\sigma_{\text{disease='heart'}}(\text{Patient})\right)$ no name zip zip disease disease p2 98125 98125 heart heart 98120 98120 CSE 414 - Fall 2017

Cartesian Product • Each tuple in R1 with each tuple in R2 $\boxed{R1 \times R2}$ • Rare in practice; mainly used to express joins

Renaming			
Changes the schema, not the instance			
$\rho_{B1,,Bn}(R)$			
• Example:			
$- \rho_{N, S}(Employee) \rightarrow Answer(N, S)$			
Not really used by systems, but needed on paper			
45 5 5			
CSE 414 - Fall 2017 18			

Natural Join

R1 ⋈ R2

- Meaning: R1 \bowtie R2 = $\pi_A(\sigma_\theta(R1 \times R2))$
- · Where:
 - Selection σ checks equality of all common attributes (attributes with same names)
 - Projection π eliminates duplicate common attributes

CSE 414 - Fall 2017

Natural Join Example R Х Z ٧ W В С R ⋈ S = U $\pi_{A,B,C}(\sigma_{R.B=S.B}(R \times S))$ Ζ V Ζ U W CSE 414 - Fall 2017

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

nar	ne	age	zip
p1		54	98125
p2		20	98120

21

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

CSE 414 - Fall 2017

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E), what is R ⋈ S?
 (A, B, C, D, E) through cross product
- Given R(A, B), S(A, B), what is R ⋈ S?
 (A, B) through intersection

CSE 414 - Fall 2017

22

AnonPatient (age, zip, disease) Voters (name, age, zip)

Theta Join

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/patients example:

$$P\bowtie_{P.zip = V.zip \text{ and P.age}} = V.age -1 \text{ and P.age} = V.age +1 V$$

$$CSE 414 - Fall 2017 \qquad 23$$

Equijoin

- A theta join where θ is an equality predicate
- By far the most used variant of join in practice

CSE 414 - Fall 2017

24

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters	V	
	_	

name	age	zip
p1	54	98125
p2	20	98120

$P\bowtie_{\text{P.age=V.age}} V$

P.age	P.zip	P.disease	P.name	V.zip	V.age
54	98125	heart	p1	98125	54
20	98120	flu	p2	98120	20

CSE 414 - Fall 2017

25

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition $\boldsymbol{\theta}$
 - Cross-product followed by selection $\boldsymbol{\theta}$
- **Equijoin**: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join condition θ consists only of equalities
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on **all** fields with same name in R and in S
 - Projection π_{A} drops all redundant attributes

CSE 414 - Fall 2017

26

So Which Join Is It?

When we write $R\bowtie S$, we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

CSE 414 - Fall 2017

27

29

More Joins

- · Outer join
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
 - Does not eliminate duplicate columns
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

CSE 414 - Fall 2017

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

$P \bowtie J$

disease 98125 54 98125 heart lawver 20 98120 98120 flu cashier 20 98120 null null lung CSE 414 - Fall 2017

More Examples

Supplier(sno, sname, scity, sstate) Part(pno, pname, psize, pcolor) ${\tt Supply}(\underline{\tt sno},\ \underline{\tt pno},\ {\tt qty},\ {\tt price})$

Name of supplier of parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \text{ (Part)})$

Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \, \bowtie \, \text{Supply} \, \bowtie (\sigma_{\text{psize} > 10} \, (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \, (\text{Part}) \,) \,)$

CSE 414 - Fall 2017

30