Where We Are

- Motivation for using a DBMS for managing data
- SQL:
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/IMPORT)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)

- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

Query Evaluation Steps

- SQL query
- Parse & Check Query
- Translate query string into internal representation
- Check syntax, access control, table names, etc.
- Logical plan -> physical plan
- Decide how best to answer query: query optimization
- Return Results
- Query Evaluation

The WHAT and the HOW

- SQL = WHAT we want to get from the data
- Relational Algebra = HOW to get the data we want
- Move from WHAT to HOW is query optimization
 - SQL -> Relational Algebra -> Physical Plan
 - Relational Algebra = Logical Plan

Relational Algebra
Sets vs. Bags

- Sets: \{a, b, c\}, \{a, d, e, f\}, \{\}\ldots
- Bags: \{a, a, b, c\}, \{b, b, b, b\}, \ldots

Relational Algebra has two semantics:
- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

Relational Algebra Operators

- Union \(\cup\)
- Intersection \(\cap\)
- Difference \(-\)
- Selection \(\sigma\)
- Projection \(\pi\)
- Cartesian product \(\times\), join \(\Join\)
- Rename \(\rho\)
- Duplicate elimination \(\delta\)
- Grouping and aggregation \(\gamma\)
- Sorting \(\tau\)

Union and Difference

- \(R_1 \cup R_2\)
- \(R_1 - R_2\)

What do they mean over bags?

What about Intersection?

- Derived operator using minus
 \(R_1 \cap R_2 = R_1 - (R_1 - R_2)\)
- Derived using join (will explain later)
 \(R_1 \cap R_2 = R_1 \Join R_2\)

Selection

- Returns all tuples that satisfy a condition
 \(\sigma_c(R)\)
- Examples
 - \(\sigma_{\text{Salary} > 40000}(\text{Employee})\)
 - \(\sigma_{\text{Name} = \text{"Smith"}}(\text{Employee})\)
- The condition \(c\) can be =, \(<\), \(\leq\), \(>\), \(\geq\), \(<>\) combined with AND, OR, NOT

Selection examples:

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>50000</td>
</tr>
</tbody>
</table>

Employee salary Example:

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>50000</td>
</tr>
</tbody>
</table>
Projection

- Eliminates columns
 \[\pi_{A_1, \ldots, A_n}(R) \]

- Example: project social-security number and names:
 \[\Pi_{\text{SSN}, \text{Name}}(\text{Employee}) \]
 \[\text{Answer(SSN, Name)} \]

Different semantics over sets or bags! Why?

Composing RA Operators

Patient

\[\pi_{\text{zip}, \text{disease}}(\text{Patient}) \]

\[\sigma_{\text{disease}='\text{heart}'}(\text{Patient}) \]

Cartesian Product

- Each tuple in \(R_1 \) with each tuple in \(R_2 \)
 \[R_1 \times R_2 \]

- Rare in practice; mainly used to express joins

Cross-Product Example

Employee x Dependent

\[\pi_{\text{Name}, \text{SSN}}(\text{Employee}) \times \pi_{\text{EmpSSN}, \text{DepName}}(\text{Dependent}) \]

Renaming

- Changes the schema, not the instance
 \[\rho_{B_1, \ldots, B_n}(R) \]

- Example:
 \[\rho_{\text{N, S}}(\text{Employee}) \rightarrow \text{Answer(N, S)} \]

Not really used by systems, but needed on paper
Natural Join

\[R_1 \bowtie R_2 \]

• Meaning: \(R_1 \bowtie R_2 = \pi_\alpha (R_1 \times R_2) \)

• Where:
 – Selection \(\sigma \) checks equality of all common attributes
 – Projection \(\pi \) eliminates duplicate common attributes

\[\text{Natural Join Example} \]

\[\begin{array}{ccc}
A & B & C \\
X & Y & U \\
X & Z & V \\
Y & Z & U \\
z & v & w
\end{array} \]

\[\begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
X & Z & U \\
X & Z & V \\
Y & Z & U \\
Y & Z & V \\
z & v & w
\end{array} \]

\[R \bowtie S = \pi_{A,B,C}(\sigma_{R.B=S.B}(R \times S)) \]

\[\text{Natural Join Example 2} \]

<table>
<thead>
<tr>
<th>AnonPatient P</th>
<th>Voters V</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>zip</td>
</tr>
<tr>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[P \bowtie V \]

P	V		
age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

\[\text{Theta Join} \]

• A join that involves a predicate

\[R_1 \bowtie_\theta R_2 = \sigma_\theta (R_1 \times R_2) \]

• Here \(\theta \) can be any condition

\[P \bowtie_\theta P \bowtie V, \text{zip and age} \geq V \text{age} -1 \text{ and age} \leq V \text{age} +1 \]

\[\text{Equijoin} \]

• A theta join where \(\theta \) is an equality predicate

• By far the most used variant of join in practice
Equijoin Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

Voters V

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>p2</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[
P \times_{P.age = V.age} V
\]

- **Join Summary**
 - **Theta-join**: \(R \bowtie_{\theta} S = \sigma_{\theta}(R \times S) \)
 - Join of \(R \) and \(S \) with a join condition \(\theta \)
 - Cross-product followed by selection \(\theta \)
 - **Equijoin**: \(R \bowtie_{=\theta} S = \sigma_{=\theta}(R \times S) \)
 - Join condition \(\theta \) consists only of equalities
 - **Natural join**: \(R \bowtie S = \pi_A(\sigma_{=\theta}(R \times S)) \)
 - Equijoin
 - Equality on all fields with same name in \(R \) and in \(S \)
 - Projection \(\pi_A \) drops all redundant attributes

So Which Join Is It?

When we write \(R \bowtie S \), we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context.

Outer Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

AnnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

\[
P \bowtie J
\]

- **More Joins**
 - **Outer join**
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
 - Does not eliminate duplicate columns
 - **Variants**
 - Left outer join
 - Right outer join
 - Full outer join

More Examples

- Name of supplier of parts with size greater than 10
 \[
 \pi_{sname}(\sigma_{psize > 10}(Supplier \bowtie Supply))
 \]

- Name of supplier of red parts or parts with size greater than 10
 \[
 \pi_{sname}(Supplier \bowtie Supply \bowtie \sigma_{pcolor = 'red'}(Part) \cup \sigma_{psize > 10}(Part))
 \]