
1

Database Systems
CSE 414

Lecture 6: Nested Queries in SQL

CSE 414 - Fall 2017 1

Announcements

• HW1 is due today 11pm

• WQ1 is due tomorrow 11pm
– no late days

• WQ3 is posted and due on Oct. 19, 11pm

CSE 414 - Fall 2017 2

Lecture Goals

• Today we will learn how to write (even) more
powerful SQL queries

• Reading: Ch. 6.3

CSE 414 - Fall 2017 3

Subqueries

• A subquery is a SQL query nested inside a larger query
– such inner-outer queries are called nested queries

• A subquery may occur in:
– A SELECT clause

– A FROM clause

– A WHERE clause

• Rule of thumb: avoid nested queries when possible;
keep in mind that sometimes it’s impossible
– (though use in FROM is often not as bad)

CSE 414 - Fall 2017 4

Subqueries…

• Can return a single constant and this constant can be
compared with another value in a WHERE clause

• Can return relations that can be used in various ways
in WHERE clauses

• Can appear in FROM clauses, followed by a tuple
variable that represents the tuples in the result of the
subquery

• Can appear as computed values in a SELECT clause

CSE 414 - Fall 2017 5 6

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product, return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city ?

CSE 414 - Fall 2017

We get a runtime error
• (SQLite simply ignores the extra values)

2

7

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city ?

CSE 414 - Fall 2017

“correlated
subquery”
“correlated
subquery”

We get a runtime error
• (SQLite simply ignores the extra values)

1. Subqueries in SELECT

Whenever possible, don’t use nested queries:

We have
“unnested”
the query

We have
“unnested”
the query

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

8

Product (pname, price, cid)
Company(cid, cname, city)

CSE 414 - Fall 2017

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=
DBMS also
does this…
DBMS also
does this…

9

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest by using
a GROUP BY

CSE 414 - Fall 2017

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

10

1. Subqueries in SELECT

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

CSE 414 - Fall 2017

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

11

2. Subqueries in FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

SELECT X.pname
FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

Unnest this query !

CSE 414 - Fall 2017

Product (pname, price, cid)
Company(cid, cname, city)

SELECT pname
FROM Product
WHERE price > 20 AND price < 500

SELECT pname
FROM Product
WHERE price > 20 AND price < 500

2. Subqueries in FROM

• We will see that sometimes we really need a
subquery
– will see most compelling examples next lecture

– in that case, we can put it in the FROM clause

CSE 414 - Fall 2017 12

3

13

3. Subqueries in WHERE

Find all companies that make some products with price < 100

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 100)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 100)

Existential quantifiersExistential quantifiers

Using EXISTS:

CSE 414 - Fall 2017

Product (pname, price, cid)
Company(cid, cname, city)

14

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 100)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 100)

Using IN

CSE 414 - Fall 2017

Find all companies that make some products with price < 100

Existential quantifiersExistential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

15

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

CSE 414 - Fall 2017

Find all companies that make some products with price < 100

Existential quantifiersExistential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Not supported
in sqlite

16

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 100

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 100

Existential quantifiers are easy !

Now let’s unnest it:Now let’s unnest it:

Find all companies that make some products with price < 100

Existential quantifiersExistential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

CSE 414 - Fall 2017

17

3. Subqueries in WHERE

Universal quantifiers are hard !

same as:

CSE 414 - Fall 2017

Universal quantifiersUniversal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that make only products with price < 100

Find all companies where all their products have price < 100

3. Subqueries in WHERE

2. Find all companies where all their products have price < 100

1. Find the other companies with some product having price ≥ 100

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 100)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 100)

18

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies where all their products have price < 100

CSE 414 - Fall 2017

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 100)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 100)

4

19

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 100)

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 100)

Using EXISTS:

CSE 414 - Fall 2017

Universal quantifiersUniversal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies where all their products have price < 100

20

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 100 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

SELECT DISTINCT C.cname
FROM Company C
WHERE 100 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

CSE 414 - Fall 2017

Universal quantifiersUniversal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies where all their products have price < 100

Not supported
in sqlite

21

Question for Database Fans
and their Friends

• Can we unnest the universal quantifier query ?
– No

CSE 414 - Fall 2017

Monotone Queries
• Definition: A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

A B

Gizmo Lyon

Camera Lodtz

A B

Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

CSE 414 - Fall 2017 22

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - Fall 2017 23

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…..
for xn in Rn do

if Conditions
output (a1,…,ak)

for x1 in R1 do
for x2 in R2 do

…..
for xn in Rn do

if Conditions
output (a1,…,ak)

Monotone Queries
• The query:

is not monotone

• Consequence: we cannot write it as a SELECT-
FROM-WHERE query without nested subqueries

24

Find all companies where all their products have price < 100

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company(cid, cname, city)

CSE 414 - Fall 2017

5

25

Queries that must be nested
(that is, cannot be SFW queries)

• Queries with universal quantifiers or negation

• Queries that use aggregates in usual ways
are not monotone
– Note: sum(..) etc. are NOT monotone

– select count(*) from R is not monotone!

CSE 414 - Fall 2017

