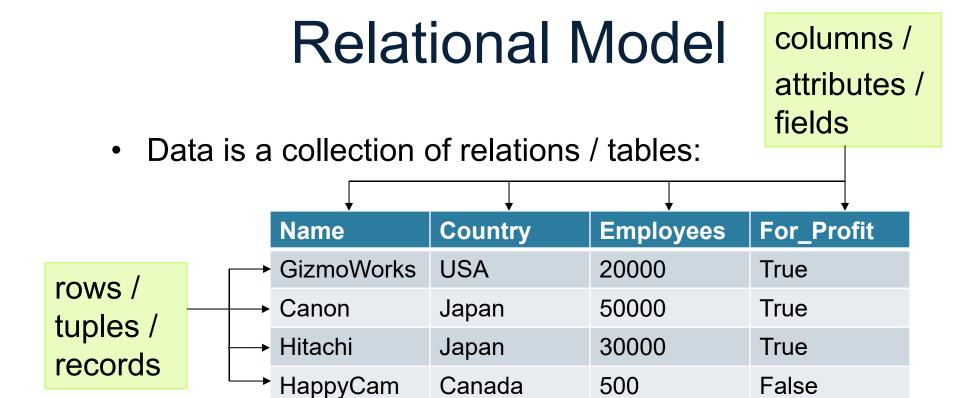
Introduction to Data Management CSE 414


Lecture 2: Data Models & SQL (Ch. 2.1-2.3)

Announcements

- Office Hours are listed on the calendar
 - one every Monday, Tuesday, Wednesday, and Friday

Data Models

- language / notation for talking about data
- models we will use:
 - relational: data is a collection of tables
 - semi-structured: data is a tree
- other models:
 - key-value pairs: used by NoSQL systems
 - graph data model: used by RDF (semi-structured can also do)
 - object oriented: often layered on relational, J2EE

- mathematically, relation is a set of tuples
 - each tuple appears 0 or 1 times in the table
 - order of the rows is unspecified

Relational Schema

- Each column has a "domain" (or type)
 - SQL has Java-like types for numbers, strings, etc.
 - domain is a constraint on the data allowed in the table
- Names and types part of the "schema" of the table:

- Particular data is an "instance" of that relation
 - data changes over time
 - DBMS usually just stores the current instance

Keys

- Key = subset of columns that uniquely identifies tuple
- Another constraint on the table
 - no two tuples can have the same values for those columns
- Examples:
 - Movie(title, year, length, genre): key is (title, year)
 - what is a good key for Company?
- Part of the schema (book notation is underline):

```
Company (Name: string, Country: string, Employees: int, For Profit: boolean)
```

Keys (cont.)

- Can have multiple keys for a table
- Only one of those keys may be "primary"
 - DBMS often makes searches by primary key fastest
 - other keys are called "secondary"
- "Foreign key" is a column (or columns) whose value is a key of another table
 - i.e., a reference to another row in another table

SQL ("sequel")

- Standard query language for relational data
 - used for databases in many different contexts
 - inspires query languages for non-relational (e.g. SQL++)
- Everything not in quotes ('...') is case insensitive
- Provides standard types. Examples:
 - numbers: INT, FLOAT, DECIMAL(p,s)
 - DECIMAL(p,s): Exact numerical, precision p, scale s. Example: decimal(5,2) is a number that has 3 digits before the decimal and 2 digits after the decimal
 - strings: CHAR(n), VARCHAR(n)
 - CHAR(n): Fixed-length n
 - VARCHAR(n): Variable length. Maximum length n

SQL ("sequel") - Cont.

- Provides standard types. Examples:
 - BOOLEAN
 - DATE, TIME, TIMESTAMP
 - DATE: Stores year, month, and day values
 - TIME: Stores hour, minute, and second values
 - TIMESTAMP: Stores year, month, day, hour, minute, and second values
- Additional types differ by vendor:
 - SQLite: http://www.sqlite.org/datatype3.html

SQL statements

- create table ...
- drop table ...
- alter table ... add/remove ...
- insert into ... values ...
- delete from ... where ...
- update ... set ... where ...

create table ...

```
CREATE TABLE Company(
name VARCHAR(20) PRIMARY KEY,
country VARCHAR(20),
employees INT,
for_profit CHAR(1));
```

drop table ...

DROP TABLE Company;

alter table ... add/remove ...

ALTER TABLE Company ADD CEO VARCHAR(20);

insert into ... values ...

INSERT INTO Company VALUES ('GizmoWorks', 'USA', 20000, 'y');

delete from ... where ...

DELETE FROM Company where name = 'GizmoWorks';

update ... set ... where ...

UPDATE Company
SET employees = employees + 120
where name = 'GizmoWorks';

Demo on Sqlite

- E.g., type sqlite3 in Cygwin
- .exit exit from sqlite3