CSE 414
Section 8 [Siena]

1. Talking to Databases using Java
2. Surviving Homework 7



Pulp Fiction

Movies, TV Celebs, Events News &
& Showtimes ~ & Photos Community

Results for "Pulp Fiction" | Where dO these
o results come from?

Titles

Pulp Fiction (1994)

Pulp Fiction (2014) (TV Epise ° An d h OW dare t h ey
Pulp Fiction (2013) (TV Episode ret rl eved ?

- Cinema & Spice (2011) (TV Series)

Fictional Pulp (2009) (Video)

¥ Pulped Fiction (2005) (TV Episode
- Neighbours (1985) (TV Series)

Pulp Fiction (1991) (TV Episode)
- Little Shop (1991) (TV Series)

Pulp Fiction (1996) (TV Episode)
- French and Saunders (1987) (TV Serj

Pulp Fiction: The Facts (2002) AVideo)

Real Life Pulp Fiction (2001
- Arrest & Trial (2000) (TV Serie

Episode)

eské Pulp Fiction a

View: More t atches or Exact title matches



Homework 7

1. Video Rental Store
2. Create a command line program
3. Have user accounts

4. Allow users to search for movies from IMDB
and rent them out



Homework introduction

The starter code contains:

* VideoStore.java: the command-line interface to your video store;
calls into Query.java to run customer transactions

* Query.java: code to run customer transactions against your
database, such as renting and returning movies

* dbconn.properties: a file containing settings to connect to the
customer and IMDB databases. You need to edit it before running
the starter code.

* sqljdbca.jar: the JDBC to SQL Server driver. This tells Java how to

connect to a SQL Azure database server, and needs to be in
your CLASSPATH (see below)

* sqljdbc.jar: the JDBC to SQL Server driver for older versions of Java.
Use this driver only if the other one does not work for you.



Technical Requirements

e 1. Read access to the IMDB database

e 2.Your own database of user accounts,
passwords and rented out videos.

* 3. Query these databases from a Java
Program. (starter code)






Create tables (setup.sql)



Demo: Run starter code
1. dbconn.properties
2. Execute program



The Hello Database program!

* see helloDatabase.java



Transaction Review

ACID!

— A Atomicity: all-or-nothing
— C Consistency: integrity of the database must be
maintained after a transaction

— | Isolation: each transaction must appear to have
executed as if no other transaction is executing at
the same time

— D Durability: effect of a transaction must never be
lost once it has been completed



Transaction Review

Transactions
begin transaction;

... Statement1...

... Statement?2...
... Statement3...

commit; /rollback;



Transaction Review

Isolation Levels in SQL
e SET TRANSACTION ISOLATION LEVEL

READ UNCOMMITTED

* SET TRANSACTION ISOLATION LEVEL
READ COMMITTED

* SET TRANSACTION ISOLATION LEVEL
REPEATABLE READ

[- SET TRANSACTION ISOLATION LEVEL}
SERIALIZABLE




See Query.java



Transaction fails?

* SQLException is thrown
e try{

} catch (SQLException e) {
// Rollback transaction



Common Questions and Mistakes

Plan is a keyword in SQL, so we cannot create a
table name Plan, change it to any name that is
relevant.

If we have a primary key in the table, the
clustered indices are created automatically.

Minimum 8 tuples means 8 tuples in total not 8
tuples for each table.

Make sure the statements in setup.sql are in the
right order.

The date field in rental database should be a valid
SQL date type that includes time.



Common Questions and Mistakes

e Fastsearch is faster but it is for single
word only. (not faster anymore)

 Print customerinfo = at least the
customer name and the number of
movies the user can still rent.



Extra comments on fast search

Magda: “In fast search, you should really execute three queries only (forget
about movie availability): the first query should compute the movie metadata

for all movies that match the keyword search, the second query should find
the directors for all movies that match the keyword search, and the third one

should similarly find the actors for all the movies that match the keyword

search. Execute each of these three queries separately. You then need to
merge the results of the three queries *in* the Java code. The merge will be
easier if you sort the results of the three queries.

There is also a way to actually merge all of this info in a single SQL query but
don't worry about that because it's similarly easy to write a very expensive
single SQL query. Best to try writing three queries exactly."



Extra comments on fast search

Vaspol: "If you take a close look at the "search” method, you will see that the

"search" method is iterating over all the mids returned when you search for
the movie. Then, for each of the mids, it will issue 2 queries to the database:
getting the actors for that mid, getting the director(s) for that mid. This
results in number_of mids * 2 queries when we do the "search" method,
which is expensive.

The idea of "fastsearch" is that we want to reduce the queries being issued to
the database. This will give you only a few queries (way less than that of
"search” method.) Therefore, it will be faster in the sense that we don't need
to connect to the database and run a lot of queries."



SQL Injection

String name_of _movie = “Pulp Fiction”;

String sql =
"SELECT * FROM movie WHERE name LIKE '%” +
name_of _movie + “%"”;

Sql = "SELECT * FROM movie WHERE name LIKE ‘%Pulp Fiction
%I”

'{]

when name_of _movie = “’; drop movie;

Sql = "SELECT * FROM movie WHERE name LIKE '%’; drop
movie; %’



Start early and have fun!
Questions?



