
Introduction to Database Systems
CSE 414

Lecture 29: NoSQL

CSE 414 - Spring 2015 1

Where We Are

•  Well… we are nearly done
•  No more web quizzes
•  Only hw8 left – watch your AWS charges, be

sure you don’t leave jobs running
•  Sections tomorrow: map-reduce algoritms
•  Friday: last lecture: wrapup, topic summary
•  Course evaluations: online; finish by Sunday
•  Today: NoSQL
 CSE 414 - Spring 2015 2

References

•  Scalable SQL and NoSQL Data Stores, Rick
Cattell, SIGMOD Record, December 2010 (Vol. 39,
No. 4)

•  Bigtable: A Distributed Storage System for
Structured Data. Fay Chang, Jeffrey Dean, et. al.
OSDI 2006

•  Online documentation: Amazon SimpleDB, Google
App Engine Datastore, etc.

CSE 414 - Spring 2015 3

NoSQL Motivation

•  Originally motivated by Web 2.0 applications

•  Goal is to scale simple OLTP-style workloads
to thousands or millions of users

•  Users are doing both updates and reads

CSE 414 - Spring 2015 4

What is the Problem?

•  Scaling a relational DBMS is hard

•  We saw how to scale queries with parallel DBMSs

•  Much more difficult to scale transactions

•  Because need to ensure ACID properties
–  Hard to do beyond a single machine

CSE 414 - Spring 2015 5

Scaling Transactions

•  Need to partition the db across machines

•  If a transaction touches one machine
–  Life is good

•  If a transaction touches multiple machines
–  ACID becomes extremely expensive!
–  Need two-phase commit

CSE 414 - Spring 2015 6

CSE 414 - Spring 2015 7

Two-Phase Commit: Motivation
Coordinator

Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT 4) Coordinator
crashes

But I already aborted!

What do we do now?

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

CSE 414 - Spring 2015 8

2PC: Phase 1 Illustrated
Coordinator

Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) YES

3) YES
3) YES

9

2PC: Phase 2 Illustrated
Coordinator

Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT

2) COMMIT

3) ACK

3) ACK
3) ACK

Transaction is
now committed!

CSE 414 - Spring 2015

Scale Through Replication?

•  Create multiple copies of each database partition
•  Spread queries across these replicas
•  Can increase throughput and lower latency
•  Easy for reads but writes, once again, become expensive!

CSE 414 - Spring 2015 10

Some
requests

Other
requests

Three replicas

NoSQL Key Feature Decisions

•  Want a data management system that is
–  Elastic and highly scalable
–  Flexible (different records have different schemas)

•  To achieve above goals, willing to give up
–  Complex queries: e.g., give up on joins
–  Multi-object transactions
–  ACID guarantees: e.g., eventual consistency is OK
–  Not all NoSQL systems give up all these properties

CSE 414 - Spring 2015 11

“Not Only SQL” or “Not Relational”

Six key features:
1.  Scale horizontally “simple operations”

–  key lookups, reads and writes of one record or a
small number of records, simple selections

2. Replicate/distribute data over many servers
3. Simple call level interface (contrast w/ SQL)
4. Weaker concurrency model than ACID
5. Efficient use of distributed indexes and RAM
6. Flexible schema

CSE 414 - Spring 2015 12

Cattell, SIGMOD Record 2010

Terminology

•  Sharding = horizontal partitioning by some
key, and storing records on different servers
in order to improve performance

•  Horizontal scalability = distribute both data
and load over many servers

•  Vertical scaling = when a dbms uses multiple
cores and/or CPUs

CSE 414 - Spring 2015 13
Scale-up

Scale-out

Cattell, SIGMOD Record 2010

ACID Vs BASE

•  ACID = Atomicity, Consistency, Isolation, and
Durability

•  BASE = Basically Available, Soft state,
Eventually consistent

CSE 414 - Spring 2015 14

Data Models

•  Tuple = row in a relational database

•  Document = nested values, extensible records (think
XML, JSON, attribute-value pairs)

•  Extensible record = families of attributes have a
schema, but new attributes may be added

•  Object = like in a programming language, but without
methods

CSE 414 - Spring 2015 15

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2015 16

Cattell, SIGMOD Record 2010

☞

Key-Value Stores Features

•  Data model: (key,value) pairs
–  A single key-value index for all the data

•  Operations
–  Insert, delete, and lookup operations on keys

•  Distribution / Partitioning
–  Distribute keys across different nodes

•  Other features
–  Versioning
–  Sorting

CSE 414 - Spring 2015 17

Key-Value Stores Internals

•  Data remains in main memory
•  One type of impl.: distributed hash table
•  Most systems also offer a persistence option
•  Others use replication to provide fault-tolerance

–  Asynchronous or synchronous replication
–  Tunable consistency: read/write one replica or majority

•  Some offer ACID transactions others do not
•  Multiversion concurrency control or locking

CSE 414 - Spring 2015 18

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2015 19

Cattell, SIGMOD Record 2010

☞

Amazon SimpleDB (1/3)

A Document Store

•  Partitioning
–  Data partitioned into domains: queries run within a domain
–  Domains seem to be unit of replication. Limit 10GB
–  Can use domains to manually create parallelism

•  Data Model / Schema
–  No fixed schema
–  Objects are defined with attribute-value pairs

CSE 414 - Spring 2015 20

Amazon SimpleDB (2/3)
•  Indexing

–  Automatically indexes all attributes

•  Support for writing
–  PUT and DELETE items in a domain

•  Support for querying
–  GET by key
–  Selection + sort
–  A simple form of aggregation: count
–  Query is limited to 5s and 1MB output (but can continue)

CSE 414 - Spring 2015 21

select output_list
from domain_name
[where expression]
[sort_instructions]
[limit limit]

Amazon SimpleDB (3/3)
•  Availability and consistency

–  “Fully indexed data is stored redundantly across multiple
servers and data centers”

–  “Takes time for the update to propagate to all storage
locations. The data will eventually be consistent, but an
immediate read might not show the change”

–  Today, can choose between consistent or eventually
consistent read

CSE 414 - Spring 2015 22

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2015 23

Cattell, SIGMOD Record 2010

☞

Extensible Record Stores

•  Based on Google’s BigTable

•  Data model is rows and columns

•  Scalability by splitting rows and columns over nodes
–  Rows partitioned through sharding on primary key
–  Columns of a table are distributed over multiple nodes by

using “column groups”

•  HBase is an open source implementation of BigTable

CSE 414 - Spring 2015 24

What is Bigtable?

•  Distributed storage system
•  Designed to

–  Hold structured data
–  Scale to thousands of servers
–  Store up to several hundred TB (maybe even PB)
–  Perform backend bulk processing
–  Perform real-time data serving

•  To scale, Bigtable has a limited set of features

CSE 414 - Spring 2015 25

Bigtable Data Model
•  Sparse, multidimensional sorted map
 (row:string, column:string, time:int64)è string

 Notice how everything but time is a string

•  Example:

CSE 414 - Spring 2015 26

Columns are grouped into families

Chang, OSDI 2006

BigTable Key Features

•  Read/writes of data under single row key is atomic
–  Only single-row transactions!

•  Data is stored in lexicographical order
–  Improves data access locality

•  Column families are unit of access control
•  Data is versioned (old versions garbage collected)

–  Ex: most recent three crawls of each page, with times

CSE 414 - Spring 2015 27

Chang, OSDI 2006

BigTable API

•  Data definition
–  Creating/deleting tables or column families
–  Changing access control rights

•  Data manipulation
–  Writing or deleting values
–  Supports single-row transactions
–  Looking up values from individual rows
–  Iterating over subset of data in the table

•  Can select on rows, columns, and timestamps

CSE 414 - Spring 2015 28

Chang, OSDI 2006

Megastore

•  BigTable is implemented, used within Google

•  Megastore is a layer on top of BigTable
–  Transactions that span nodes
–  A database schema defined in a SQL-like language
–  Hierarchical paths that allow some limited joins

•  Megastore is made available through the Google
App Engine Datastore

CSE 414 - Spring 2015 29

Cattell, SIGMOD Record 2010

Google App Engine

•  “Run your web applications on Google's infrastructure”

•  Limitation: app must be written in Python or Java
•  Key features (examples for Java)

–  A complete development stack that uses familiar technologies to
build and host web applications

–  Includes: Java JVM, a Java Servlets interface, and support for
standard interfaces to the App Engine scalable datastore and
services, such as JDO, JPA, JavaMail, and Jcache

–  JVM runs in a secured "sandbox" environment to isolate your
application for service and security (some ops not allowed)

CSE 414 - Spring 2015 30

Google App Engine Datastore (1/3)
•  “Distributed data storage service that features a query

engine and transactions”
•  Partitioning

–  Data partitioned into “entity groups”
–  Entities of the same group are stored together for efficient

execution of transactions

•  Data Model / Schema
–  Each entity has a key and properties that can be either

•  Named values of one of several supported data types (includes list)
•  References to other entities

–  Flexible schema: different entities can have different properties

CSE 414 - Spring 2015 31

Google App Engine Datastore (2/3)
•  Indexing

–  Applications define indexes: must have one index per query type

•  Support for writing
–  PUT and DELETE entities (for Java, hidden behind JDO)

•  Support for querying
–  GET an entity using its key
–  Execute a query: selection + sort
–  Language bindings: invoke methods or write SQL-like queries
–  Lazy query evaluation: query executes when user accesses results

CSE 414 - Spring 2015 32

Google App Engine Datastore (3/3)

•  Availability and consistency
–  Every datastore write operation (put/delete) is atomic

•  Outside of transactions, get READ_COMMITTED isolation
–  Support transactions (many ops on many objects)

•  Single-group transactions
•  Cross-group transactions with up to 5 groups
•  Transactions use snapshot isolation
•  Transactions use optimistic concurrency control

CSE 414 - Spring 2015 33

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2015 34

Cattell, SIGMOD Record 2010

