Introduction to Database Systems CSE 414

Lecture 28 Parallel Databases Wrap-up

CSE 414 - Spring 2015

Announcements

- Homework 8 (last) due on Friday night
 Help each other out with configuration funnies
- Final exam Monday, 2:30
 Review Sunday afternoon, 2:00

- Have P servers (say P=27 or P=1000)
- How do we compute this query? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$

- Have P servers (say P=27 or P=1000)
- How do we compute this query? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$
- This computes all "triangles".
- E.g. let Follows(x,y) be all pairs of Twitter users s.t. x follows y. Let R=S=T=Follows. Then Q computes all triples of people that follow each other.

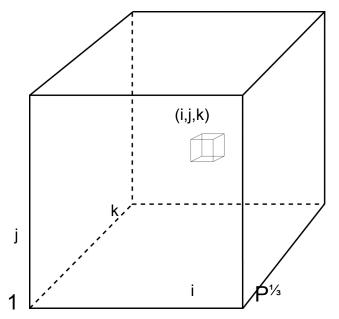
- Have P servers (say P=27 or P=1000)
- How do we compute this query? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$
- Step 1:
 - Each server sends R(x,y) to server $h(y) \mod P$
 - Each server sends S(y,z) to server $h(y) \mod P$

- Have P servers (say P=27 or P=1000)
- How do we compute this query? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$
- Step 1:
 - Each server sends R(x,y) to server $h(y) \mod P$
 - Each server sends S(y,z) to server $h(y) \mod P$
- Step 2:
 - Each server computes R∞S locally
 - Each server sends $[R(x,y) \bowtie S(y,z)]$ to $h(x) \mod P$
 - Each server sends T(z,x) to $h(x) \mod P$

- Have P servers (say P=27 or P=1000)
- How do we compute this query? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$
- Step 1:
 - Each server sends R(x,y) to server $h(y) \mod P$
 - Each server sends S(y,z) to server $h(y) \mod P$
- Step 2:
 - Each server computes R∞S locally
 - Each server sends $[R(x,y) \bowtie S(y,z)]$ to $h(x) \mod P$
 - Each server sends T(z,x) to $h(x) \mod P$
- Final output:
 - Each server computes locally and outputs $R \bowtie S \bowtie T$

- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y) ⋈ S(y,z) ⋈ T(z,x)

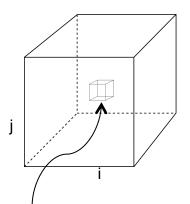
- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y) ⋈ S(y,z) ⋈ T(z,x)
- Organize the P servers into a cube with side $P^{1/3}$
 - − Thus, each server is uniquely identified by (i,j,k), i,j,k≤ $P^{\frac{1}{3}}$



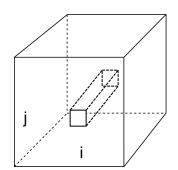
- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y) ⋈ S(y,z) ⋈ T(z,x)
- Organize the P servers into a cube with side $P^{1/3}$
 - − Thus, each server is uniquely identified by (i,j,k), i,j,k≤ $P^{\frac{1}{3}}$
- Step 1:
 - Each server sends R(x,y) to all servers (h(x),h(y),*)
 - Each server sends S(y,z) to all servers (*,h(y),h(z)) > 1
 - Each server sends T(x,z) to all servers (h(x),*,h(z))

R(x,y)

- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$
- Organize the P servers into a cube with side $P^{\frac{1}{3}}$
 - − Thus, each server is uniquely identified by (i,j,k), i,j,k≤ $P^{\frac{1}{3}}$
- Step 1:
 - Each server sends R(x,y) to all servers (h(x),h(y),*)
 - Each server sends S(y,z) to all servers (*,h(y),h(z))
 - Each server sends T(x,z) to all servers (h(x),*,h(z))
- Final output:
 - Each server (i,j,k) computes the query R(x,y), S(y,z), T(z,x) locally



- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step? $Q(x,y,z) = R(x,y) \bowtie S(y,z) \bowtie T(z,x)$
- Organize the P servers into a cube with side $P^{\frac{1}{3}}$
 - − Thus, each server is uniquely identified by (i,j,k), i,j,k≤ $P^{\frac{1}{3}}$
- Step 1:
 - Each server sends R(x,y) to all servers (h(x),h(y),*)
 - Each server sends S(y,z) to all servers (*,h(y),h(z))
 - Each server sends T(x,z) to all servers (h(x),*,h(z))
- Final output:
 - Each server (i,j,k) computes the query R(x,y), S(y,z), T(z,x) locally
- Analysis: each tuple R(x,y) is replicated at most $P^{\frac{1}{3}}$ times



Parallel DBs v.s. MapReduce

Parallel DB

- Plusses
 - Efficient binary format
 - Indexes, physical tuning
 - Cost-based optimization
- Minuses
 - Difficult to import data
 - Lots of baggage: logging, transactions

MapReduce

- Minuses
 - Lots of time spent parsing!
 - Text files
 - "Optimizers is between your eyes and your keyboard"
- Plusses
 - Any data
 - Lightweight, easy to speedup
 - Arguably more scalable

Example: Parallel DBMS vs. MR

1a. Parallel DBMS

R(a,b) is <u>horizontally partitioned</u> across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

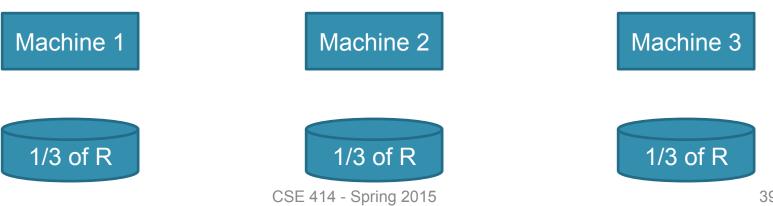
The tuples are randomly organized across machines (i.e., R is **block partitioned** across machines).

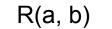
Show a RA plan for this query and how it will be executed across the N = 3 machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a R(a, b)

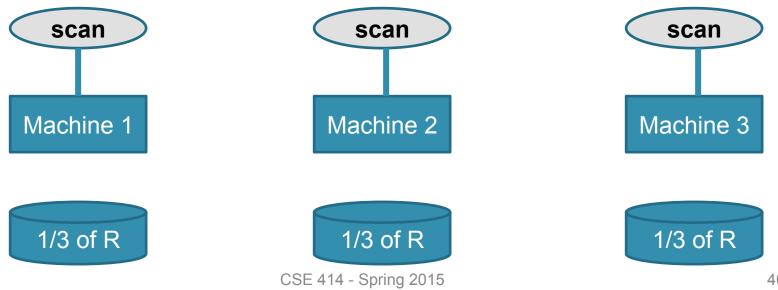
SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a



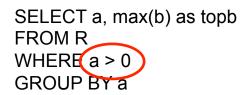


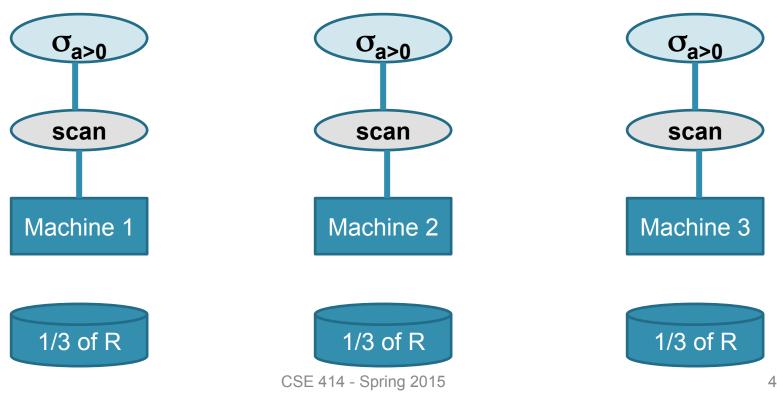
SELECT a, max(b) as topb FROM R WHERE a > 0GROUP BY a

If more than one relation on a machine, then "scan S", "scan R" etc

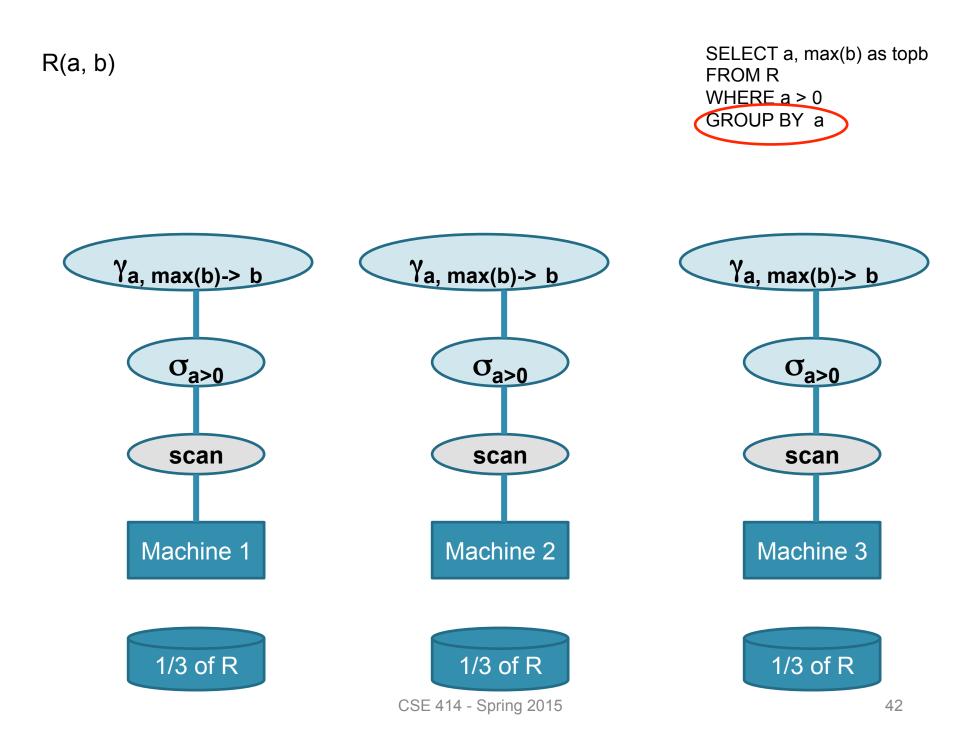


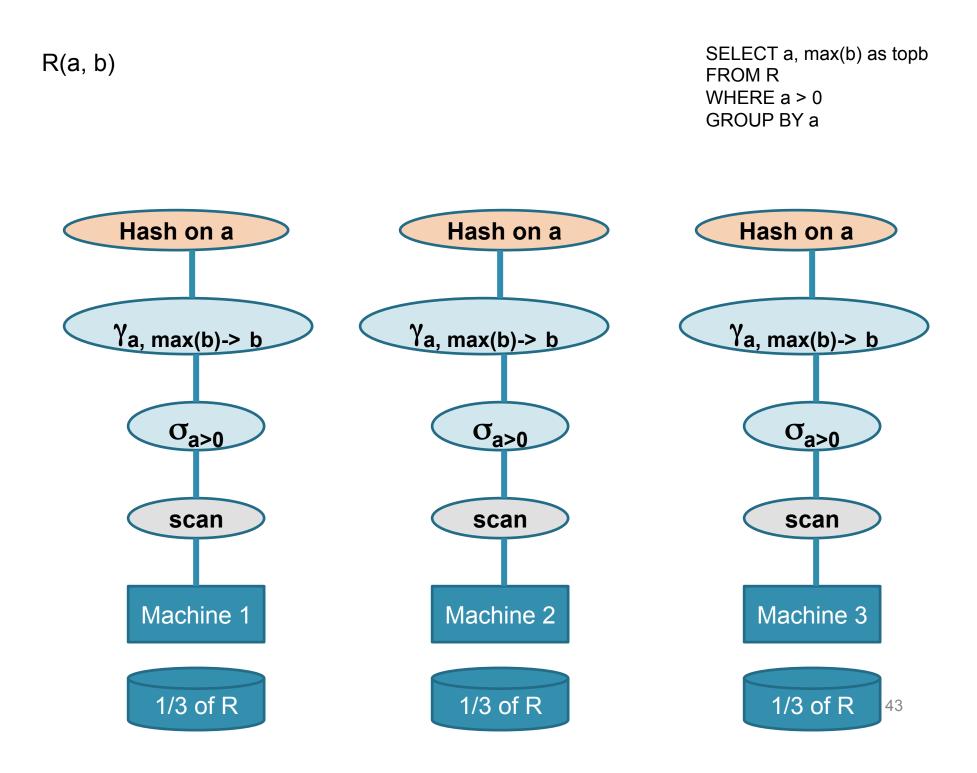
R(a, b)

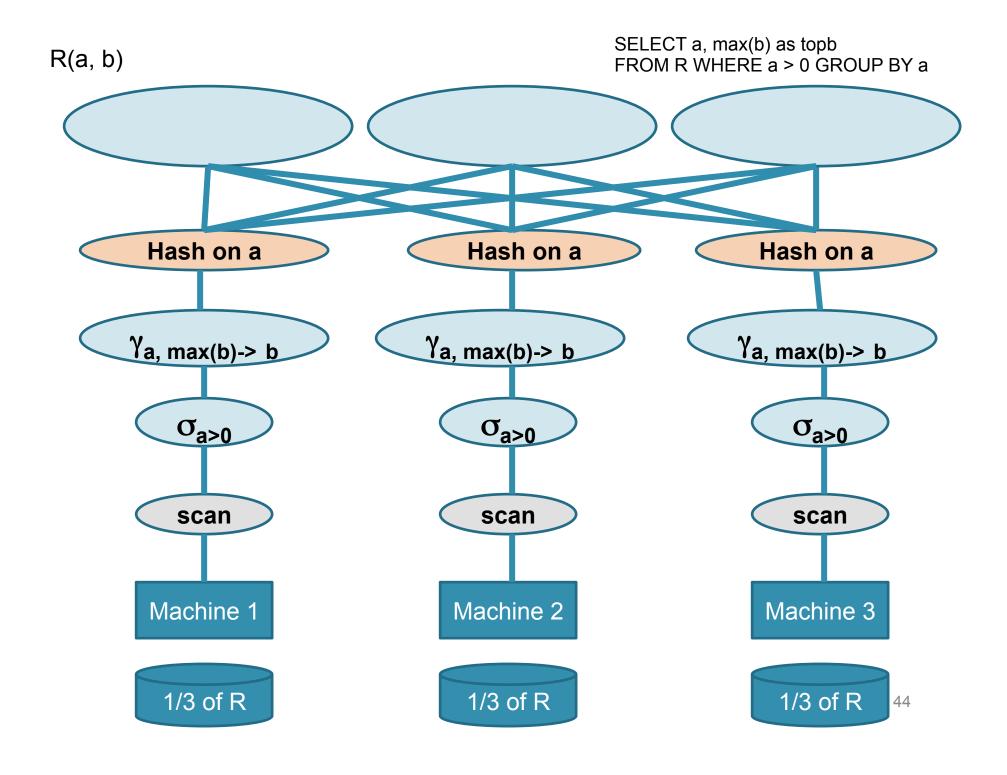


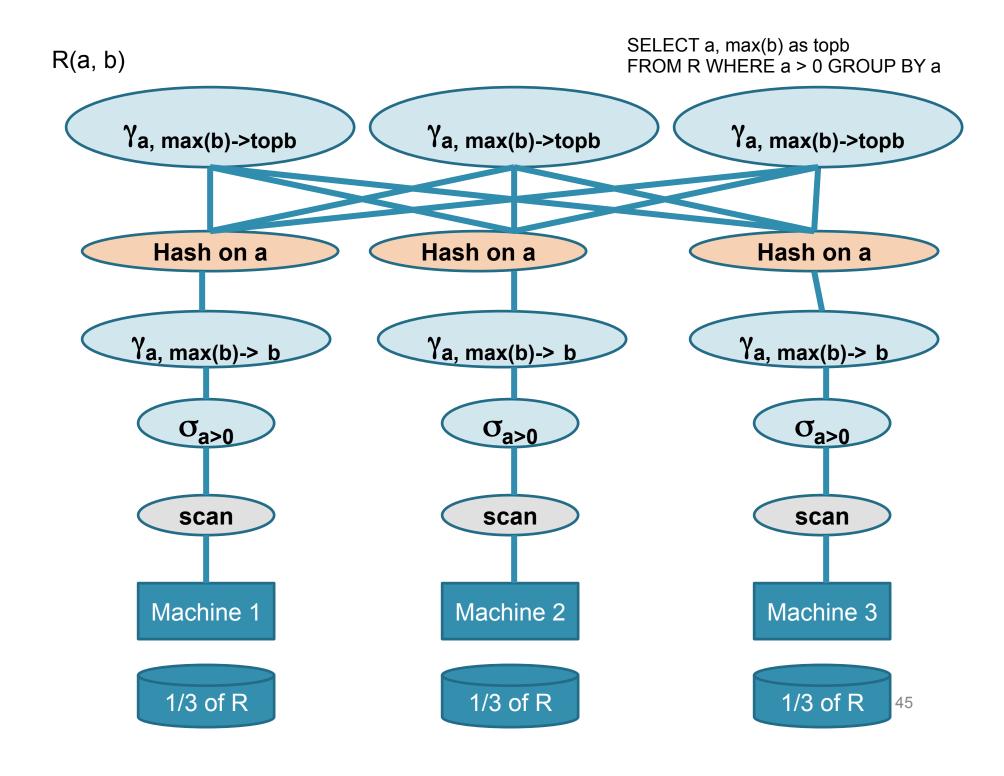


41









1b. Map Reduce

Explain how the query will be executed in MapReduce (not PIG)

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

Specify the computation performed in the map and the reduce functions

Мар

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

- Each map task
 - Scans a block of R
 - Calls the map function for each tuple
 - The map function applies the selection predicate to the tuple
 - For each tuple satisfying the selection, it outputs a record with key = a and value = b

When each map task scans multiple relations, it needs to output something like
key = a and value = ('R', b)
which has the relation name 'R'

Shuffle

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

• The MapReduce engine reshuffles the output of the map phase and groups it on the intermediate key, i.e. the attribute a

Reduce

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

- Each reduce task
 - computes the aggregate value max(b) = topb for each group (i.e. a) assigned to it (by calling the reduce function)
 - outputs the final results: (a, topb)

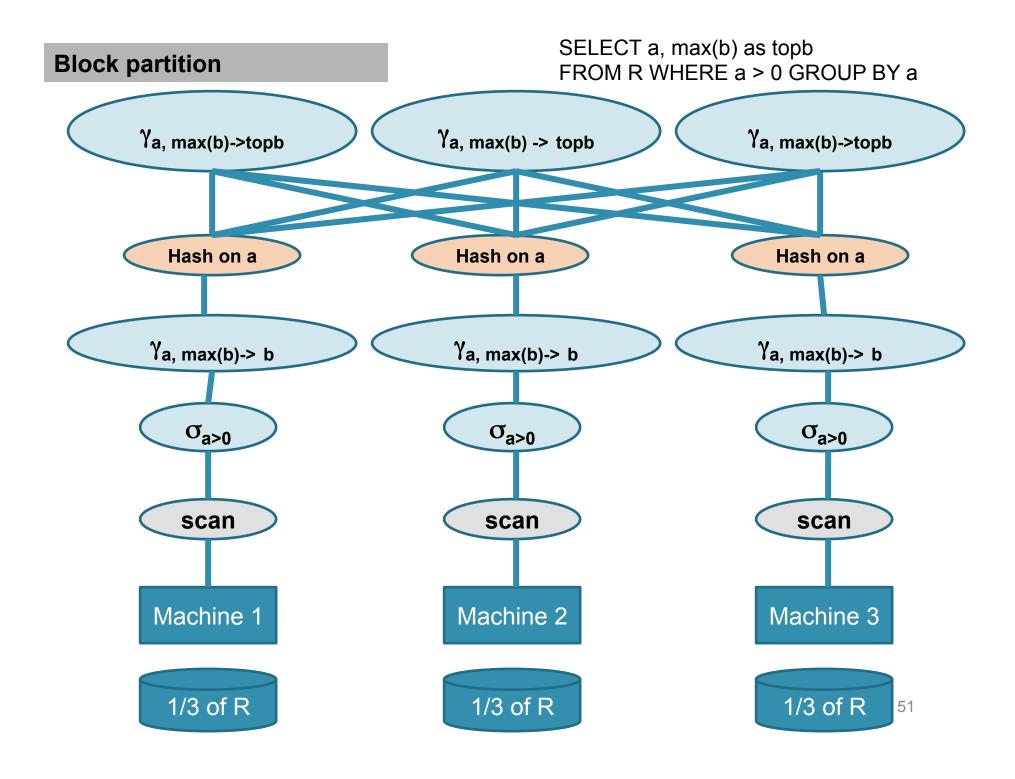
• A local combiner can be used to compute local max before data gets reshuffled (in the map tasks)

Multiple aggregates can be output by the reduce phase like
 key = a and value = (sum(b), min(b)) etc.

 Sometimes a second (third etc) level of Map-Reduce phase might be needed

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a **1c. Benefit of hash-partitioning**

- What would change if we hash-partitioned R on R.a before executing this query
 - For parallel DBMS
 - For MapReduce

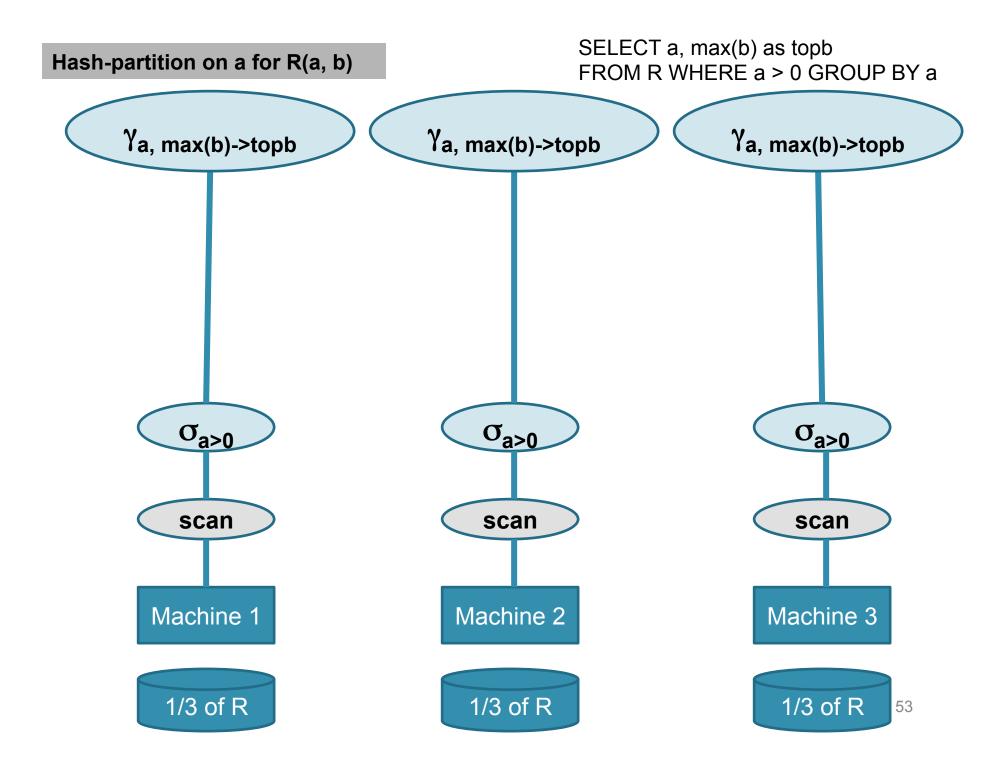


SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a **1c. Benefit of hash-partitioning**

For parallel DBMS

- It would avoid the data re-shuffling phase

- It would compute the aggregates locally



SELECT a, max(b) as topb FROM R WHERE a > GROUP BY a **1c. Benefit of hash-partitioning**

For MapReduce

- Logically, MR won't know that the data is hash-partitioned
- MR treats map and reduce functions as black-boxes and does not perform any optimizations on them
- But, if a local combiner is used
 - Saves communication cost:
 - fewer tuples will be emitted by the map tasks
 - Saves computation cost in the reducers:
 - the reducers would not have to do anything (if one map task/ node) or less computation (multiple map tasks/node)