
Introduction to Database Systems
CSE 414

Lecture 23: Transactions II

CSE 414 - Spring 2015 1

Announcements

•  HW7:
– Posted later today
– Some Java programming required
– Plus connection to SQL Azure
– Demos, overview in sections tomorrow
– Due next week

•  New web quiz out shortly, due next Friday!

CSE 414 - Spring 2015 2

Where We Are?

•  Last time: Locks in SQLite

•  Today SQL Server (and others)

CSE 414 - Spring 2015 3

Lock-Based Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock

before reading/writing that element
•  If lock is held by another transaction, then wait
•  The transaction must release the lock(s)

4 CSE 414 - Spring 2015

Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

5 CSE 414 - Spring 2015

A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

6 CSE 414 - Spring 2015

Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule 7

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?
8

Two Phase Locking (2PL)

CSE 414 - Spring 2015 9

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

10 CSE 414 - Spring 2015

A New Problem:
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
11 CSE 414 - Spring 2015

Strict 2PL

CSE 414 - Spring 2015 12

All locks are held until the transaction
commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B);

Rollback …GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit 13

Deadlocks

•  T1 waits for a lock held by T2;
•  T2 waits for a lock held by T3;
•  T3 waits for
•  . . .
•  Tn waits for a lock held by T1

14 CSE 414 - Spring 2015

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

15 CSE 414 - Spring 2015

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

18

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks
–  E.g. SQL Server

•  Coarse grain locking (e.g., tables, entire database)
–  Many false conflicts
–  Less overhead in managing locks
–  E.g. SQL Lite

CSE 414 - Spring 2015

Lock Performance

CSE 414 - Spring 2015 19

Th
ro

ug
hp

ut
 (T

P
S

)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

20

Phantom Problem

•  So far we have assumed the database to
be a static collection of elements (=tuples)

•  If tuples are inserted/deleted then the
phantom problem appears

CSE 414 - Spring 2015

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

CSE 414 - Spring 2015 21

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’
Suppose there are two blue products, A1, A2:

NO: T1: sees 2 products the first time, then sees 3 products the second time 22

Phantom Problem

23

Suppose there are two blue products, A1, A2:
R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 414 - Spring 2015

Phantom Problem

24

Suppose there are two blue products, A1, A2:
R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

W2(A3),R1(A1),R1(A2),R1(A1),R1(A2),R1(A3)

When seen as a sequence of R/W,
the schedule appears serializable.
Locks cannot prevent this schedule.

25

Phantom Problem

•  A “phantom” is a tuple that is
invisible during part of a transaction
execution but not invisible during the entire
execution

•  In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 414 - Spring 2015

Dealing With Phantoms

•  Lock the entire table, or
•  Lock the index entry for ‘blue’

–  If index is available
•  Or use predicate locks

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !
CSE 414 - Spring 2015 26

27

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSE 414 - Spring 2015

1. Isolation Level: Dirty Reads

•  “Long duration” WRITE locks
– Strict 2PL

•  No READ locks
– Read-only transactions are never delayed

CSE 414 - Spring 2015 28

Possible problems: dirty and inconsistent reads

2. Isolation Level: Read Committed

•  “Long duration” WRITE locks
– Strict 2PL

•  “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 414 - Spring 2015 29

Unrepeatable reads
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

•  “Long duration” WRITE locks
– Strict 2PL

•  “Long duration” READ locks
– Strict 2PL

CSE 414 - Spring 2015 30

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

•  “Long duration” WRITE locks
– Strict 2PL

•  “Long duration” READ locks
– Strict 2PL

•  Predicate locking
– To deal with phantoms

CSE 414 - Spring 2015 31

Beware!

In commercial DBMSs:
•  Default level is often NOT serializable
•  Default level differs between DBMSs
•  Some engines support subset of levels!
•  Serializable may not be exactly ACID

–  Locking ensures isolation, not atomicity

•  Also, some DBMSs do NOT use locking and
different isolation levels can lead to different pbs

•  Bottom line: Read the doc for your DBMS!

CSE 414 - Spring 2015 32

