
1

Introduction to Database Systems
CSE 414

Lectures 11-12:
Query Implementation

CSE 414 - Spring 2015

Announcements

•  New HW and webquiz out later today
– Due next week

•  Next two lectures: query implementation
and operator algorithms
– Reading: sec. 15.1-15.6

CSE 414 - Spring 2015 2

SQL Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 414 - Spring 2015

Logical Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

4

CSE 414 - Spring 2015

Query Processing
•  Query execution

–  How to synchronize operators?
–  How to pass data between operators?

•  Approach:
–  One thread per query
–  Iterator interface
–  Pipelined execution, or
–  Intermediate result materialization

5

CSE 414 - Spring 2015

Iterator Interface
•  Each operator implements iterator interface
•  Interface has only three methods
•  open()

–  Initializes operator state
– Sets parameters such as selection condition

•  get_next()
– Operator invokes get_next() recursively on its

inputs
– Performs processing and produces an output tuple

•  close(): cleans-up state

6

CSE 414 - Spring 2015

Pipelined Execution

•  Applies parent operator to tuples directly
as they are produced by child operators

•  Benefits
– No operator synchronization issues
– Saves cost of writing intermediate data to disk
– Saves cost of reading intermediate data from

disk
– Good resource utilizations on single processor

•  This approach is used whenever possible
7

CSE 414 - Spring 2015

Pipelined Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

8

Intermediate Tuple Materialization

•  Writes the results of an operator to an
intermediate table on disk

•  No direct benefit, but…
•  Necessary for some operator implementations
•  Also used when operator needs to examine the

same tuples multiple times

CSE 414 - Spring 2015 9

CSE 414 - Spring 2015

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

10

CSE 414 - Spring 2015

Cost Parameters

•  In database systems the data is on disk
•  Cost = total number of I/Os
•  Parameters:

–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a

•  When a is a key, V(R,a) = T(R)
•  When a is not a key, V(R,a) can be anything <= T(R)

•  Main constraint: M = # of memory (buffer) pages

11

CSE 414 - Spring 2015

Cost

•  Cost of an operation = number of disk
I/Os to:
– Read the operands
– Compute the result

•  Cost of writing the result to disk is not
included
– Need to count it separately when applicable

12

CSE 414 - Spring 2015

Outline
•  Join operator algorithms

– One-pass algorithms (Sec. 15.2 and 15.3)
–  Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

 (Quick overview only)

– Note about readings:
•  In class, we will discuss only algorithms for join

operator (because other operators are easier)
•  Book has more details about joins and descriptions

of other operators

13

CSE 414 - Spring 2015

Hash Join
Hash join: R ⋈ S
•  Scan R, build buckets in main memory
•  Then scan S and join
•  Cost: B(R) + B(S)

•  One-pass algorithm when B(R) <= M
– By “one pass”, we mean that the operator

reads its operands only once. It does not write
intermediate results back to disk.

14

Hash Join Example

15

Patient Insurance

Patient(pid, name, address)

Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient

2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

16

Patient Insurance

1 2

3 4

Patient

2 4

Insurance

4 3

Showing pid
only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash Join Example

17

Step 1: Scan Patient and create hash table in memory

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2

Hash Join Example

18

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4

Output buffer

2 2

Write to disk

Hash Join Example

19

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4

Output buffer

4 4

Hash Join Example

20

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 4 3

Output buffer

4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Hash Join Details

21

Open() {
 H = newHashTable();
 R.Open();
 x = R.GetNext();
 while (x != null) {
 H.insert(x);
 x = R.GetNext();
 }
 R.Close();
 S.Open();
 buffer = [];
}

Hash Join Details

22

GetNext() {
 while (buffer == []) {
 x = S.GetNext();
 if (x==Null) return NULL;
 buffer = H.find(x);
 }
 z = buffer.first();
 buffer = buffer.rest();
 return z;
}

Hash Join Details

23

Close() {
 release memory (H, buffer, etc.);
 S.Close()
}

CSE 414 - Spring 2015

CSE 414 - Spring 2015

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S)
•  Not quite one-pass since S is read many

times

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

24

CSE 414 - Spring 2015

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples
 if r and s join then output (r,s)

25

1 2

Nested Loop Example

26

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer

2 2

Input buffer for Insurance 2 4

Nested Loop Example

27

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 4 3

1 2

Nested Loop Example

28

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

CSE 414 - Spring 2015

Sort-Merge Join

Sort-merge join: R ⋈ S
•  Scan R and sort in main memory
•  Scan S and sort in main memory
•  Merge R and S

•  Cost: B(R) + B(S)
•  One pass algorithm when B(S)+B(R) <= M
•  Typically, this is NOT a one pass algorithm

29

Sort-Merge Join Example

30

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

31

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

32

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

1 1

Sort-Merge Join Example

33

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

Keep going until end of first relation

CSE 414 - Spring 2015

Outline for Today

•  Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
–  Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

34

CSE 414 - Spring 2015

Review: Access Methods

•  Heap file
– Scan tuples one at the time

•  Hash-based index
– Efficient selection on equality predicates
– Can also scan data entries in index

•  Tree-based index
– Efficient selection on equality or range

predicates
– Can also scan data entries in index

35

CSE 414 - Spring 2015

Index Based Selection

•  Selection on equality: σa=v(R)

•  V(R, a) = # of distinct values of attribute a

•  Clustered index on a: cost B(R)/V(R,a)
•  Unclustered index on a: cost T(R)/V(R,a)

•  Note: we ignored I/O cost for index pages
36

CSE 414 - Spring 2015

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os
•  Index based selection

–  If index is clustered: B(R)/V(R,a) = 100 I/Os
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

•  Lesson
–  Don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

37

CSE 414 - Spring 2015

Index Nested Loop Join

R ⋈ S
•  Assume S has an index on the join attribute
•  Iterate over R, for each tuple fetch

corresponding tuple(s) from S

•  Cost:
–  If index on S is clustered: B(R)+T(R)B(S) / V(S,a)
–  If index on S is unclustered: B(R)+T(R)T(S)/V(S,a)

38

CSE 414 - Spring 2015

Outline for Today

•  Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
–  Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

39

CSE 414 - Spring 2015

Two-Pass Algorithms

•  What if data does not fit in memory?
•  Need to process it in multiple passes

•  Two key techniques
– Hashing
– Sorting

40

CSE 414 - Spring 2015

Two Pass Algorithms
Based on Hashing

•  Idea: partition a relation R into buckets, on disk
•  Each bucket has size approx. B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

•  Does each bucket fit in main memory ?
– Yes if B(R)/M <= M, i.e. B(R) <= M2

41

CSE 414 - Spring 2015

Partitioned (Grace) Hash Join

R ⋈ S
•  Step 1:

– Hash S into M-1 buckets
– Send all buckets to disk

•  Step 2
– Hash R into M-1 buckets
– Send all buckets to disk

•  Step 3
– Join every pair of buckets

42

CSE 414 - Spring 2015

•  Partition both relations using hash fn h
•  R tuples in partition i will only match S tuples in

partition i.

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

Partitioned Hash Join

43

CSE 414 - Spring 2015

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

Partitioned Hash Join

•  Read in partition of R, hash it using h2 (≠ h)
•  Build phase

•  Scan matching partition of S, search for matches
•  Probe phase

44

CSE 414 - Spring 2015

Partitioned Hash Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

45

CSE 414 - Spring 2015

External Sorting

•  Problem: Sort a file of size B with memory M

•  Where we need this:
– ORDER BY in SQL queries
– Several physical operators
– Bulk loading of B+-tree indexes.

•  Sorting is two-pass when B < M2

46

External Merge-Sort: Step 1

Phase one: load M pages in memory, sort

47

Disk Disk

.

Size M pages

Main memory

Runs of length M pages

External Merge-Sort: Step 2

Merge M – 1 runs into a new run
Result: runs of length M (M – 1)≈ M2

CSE 414 - Spring 2015 48

Disk Disk

.
Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done
Main memory

CSE 414 - Spring 2015

External Merge-Sort

•  Cost:
– Read+write+read = 3B(R)
– Assumption: B(R) <= M2

•  Other considerations
–  In general, a lot of optimizations are

possible

49

Two-Pass Join Algorithm
Based on Sorting

Join R ⋈ S
•  Step 1: sort both R and S on the join attribute:

–  Cost: 4B(R)+4B(S) (because need to write to disk)
•  Step 2: Read both relations in sorted order,

match tuples
–  Cost: B(R)+B(S)

•  Total cost: 5B(R)+5B(S)
•  Assumption: B(R) <= M2, B(S) <= M2

CSE 414 - Spring 2015 50

Two-Pass Join Algorithm
Based on Sorting

Join R ⋈ S
•  If B(R) + B(S) <= M2

–  Or if use a priority queue to create runs of length 2|M|
•  If the number of tuples in R matching those in S is

small (or vice versa)
•  We can compute the join during the merge phase

•  Total cost: 3B(R)+3B(S)

CSE 414 - Spring 2015 51

Summary of Join Algorithms

•  Nested Loop Join: B(R) + B(R)B(S)
– Assuming page-at-a-time refinement

•  Hash Join: 3B(R) + 3B(S)
– Assuming: min(B(R), B(S)) <= M2

•  Sort-Merge Join: 3B(R)+3B(S)
– Assuming B(R)+B(S) <= M2

•  Index Nested Loop Join: B(R)+T(R)B(S)/V(S,a)
– Assuming S has clustered index on a

52 CSE 414 - Spring 2015

CSE 414 - Spring 2015

Summary of Query Execution
•  For each logical query plan

– There exist many physical query plans
– Each plan has a different cost
– Cost depends on the data

•  Additionally, for each query
– There exist several logical plans

•  Explore on your own: query optimization
– How to compute the cost of a complete plan?
– How to pick a good query plan for a query?

53

