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Introduction to Database Systems 
CSE 414 

Lectures 11-12: 
Query Implementation 

CSE 414 - Spring 2015 



Announcements 

•  New HW and webquiz out later today 
– Due next week 

•  Next two lectures: query implementation 
and operator algorithms 
– Reading: sec. 15.1-15.6 
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SQL Query Evaluation Steps 

Parse & Check Query 

Decide how best to 
answer query: query 

optimization  

Query Execution 

SQL query 

Return Results 

Translate query  
string into internal  

representation 

Check syntax,  
access control,  

table names, etc. 

Query 
Evaluation 
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Logical Plan 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 
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Query Processing 
•  Query execution 

–  How to synchronize operators? 
–  How to pass data between operators? 

•  Approach: 
–  One thread per query 
–  Iterator interface 
–  Pipelined execution, or 
–  Intermediate result materialization 
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Iterator Interface 
•  Each operator implements iterator interface 
•  Interface has only three methods 
•  open() 

–  Initializes operator state 
– Sets parameters such as selection condition 

•  get_next() 
– Operator invokes get_next() recursively on its 

inputs 
– Performs processing and produces an output tuple 

•  close(): cleans-up state 
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Pipelined Execution 

•  Applies parent operator to tuples directly 
as they are produced by child operators 

•  Benefits 
– No operator synchronization issues 
– Saves cost of writing intermediate data to disk 
– Saves cost of reading intermediate data from 

disk 
– Good resource utilizations on single processor 

•  This approach is used whenever possible 
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Pipelined Execution 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 
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Intermediate Tuple Materialization 

•  Writes the results of an operator to an 
intermediate table on disk 

•  No direct benefit, but… 
•  Necessary for some operator implementations 
•  Also used when operator needs to examine the 

same tuples multiple times 
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Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan: write to T2) 

(On the fly) 

σ pno=2 

(Scan: write to T1) 

Intermediate Tuple Materialization 
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Cost Parameters 

•  In database systems the data is on disk 
•  Cost = total number of I/Os 
•  Parameters: 

–  B(R) = # of blocks (i.e., pages) for relation R 
–  T(R) = # of tuples in relation R 
–  V(R, a) = # of distinct values of attribute a 

•  When a is a key, V(R,a) = T(R) 
•  When a is not a key, V(R,a) can be anything <= T(R) 

•  Main constraint: M = # of memory (buffer) pages 
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Cost 

•  Cost of an operation = number of disk  
I/Os to: 
– Read the operands 
– Compute the result 

•  Cost of writing the result to disk is not 
included 
– Need to count it separately when applicable 
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Outline 
•  Join operator algorithms 

– One-pass algorithms (Sec. 15.2 and 15.3) 
–  Index-based algorithms (Sec 15.6) 
– Two-pass algorithms (Sec 15.4 and 15.5) 

 (Quick overview only) 

– Note about readings:  
•  In class, we will discuss only algorithms for join 

operator (because other operators are easier) 
•  Book has more details about joins and descriptions 

of other operators 
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Hash Join 
Hash join:  R ⋈ S 
•  Scan R, build buckets in main memory 
•  Then scan S and join 
•  Cost: B(R) + B(S) 

•  One-pass algorithm when B(R) <= M 
– By “one pass”, we mean that the operator 

reads its operands only once. It does not write 
intermediate results back to disk. 
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Hash Join Example 
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Patient     Insurance  

Patient(pid, name, address) 

Insurance(pid, provider, policy_nb) 

1 ‘Bob’ ‘Seattle’ 
2 ‘Ela’ ‘Everett’ 

3 ‘Jill’ ‘Kent’ 
4 ‘Joe’ ‘Seattle’ 

Patient 

2 ‘Blue’ 123 
4 ‘Prem’ 432 

Insurance 

4 ‘Prem’ 343 
3 ‘GrpH’ 554 

Two tuples 
per page 



Hash Join Example 
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Patient     Insurance  

1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

Showing pid 
only 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 



Hash Join Example 
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Step 1: Scan Patient and create hash table in memory 

1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 



Hash Join Example 
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Step 2: Scan Insurance and probe into hash table 

1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 2 4 

Output buffer 

2 2 

Write to disk 
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Step 2: Scan Insurance and probe into hash table 

1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 2 4 

Output buffer 

4 4 



Hash Join Example 
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Step 2: Scan Insurance and probe into hash table 

1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 4 3 

Output buffer 

4 4 

Keep going until read all of Insurance 

Cost: B(R) + B(S) 



Hash Join Details 
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Open( ) { 
  H = newHashTable( ); 
  R.Open( ); 
  x = R.GetNext( ); 
  while (x != null) {  
    H.insert(x);  
    x = R.GetNext( ); 
  } 
  R.Close( ); 
  S.Open( ); 
  buffer = [ ]; 
} 



Hash Join Details 
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GetNext( ) { 
  while (buffer == [ ]) { 
        x = S.GetNext( ); 
        if (x==Null) return NULL; 
        buffer = H.find(x); 
  } 
  z = buffer.first( ); 
  buffer = buffer.rest( ); 
  return z; 
}   



Hash Join Details 
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Close( ) { 
  release memory (H, buffer, etc.); 
  S.Close( ) 
} 
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Nested Loop Joins 
•  Tuple-based nested loop R ⋈ S 
•  R is the outer relation, S is the inner relation 

 

 
•  Cost: B(R) + T(R) B(S) 
•  Not quite one-pass since S is read many 

times 

for each tuple r in R do 
   for each tuple s in S do 
       if r and s join then output (r,s) 
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Page-at-a-time Refinement 

•  Cost: B(R) + B(R)B(S) 

for each page of tuples r in R do 
   for each page of tuples s in S do 

  for all pairs of tuples 
   if r and s join then output (r,s) 
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Nested Loop Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Input buffer for Patient 

Output buffer 

2 2 

Input buffer for Insurance 2 4 



Nested Loop Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Input buffer for Patient 1 2 

Output buffer 

Input buffer for Insurance 4 3 

1 2 



Nested Loop Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Input buffer for Patient 1 2 

Output buffer 

Input buffer for Insurance 2 8 

1 2 

2 2 

Cost: B(R) + B(R)B(S) 

Keep going until read  
all of Insurance 

Then repeat for next  
page of Patient… until end of Patient 
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Sort-Merge Join 

Sort-merge join:  R ⋈ S 
•  Scan R and sort in main memory 
•  Scan S and sort in main memory 
•  Merge R and S 

•  Cost: B(R) + B(S) 
•  One pass algorithm when B(S)+B(R) <= M 
•  Typically, this is NOT a one pass algorithm 
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Sort-Merge Join Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 1: Scan Patient and sort in memory 



Sort-Merge Join Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 2: Scan Insurance and sort in memory 

1 2 3 4 

6 8 8 9 

2 3 4 6 



Sort-Merge Join Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 3: Merge Patient and Insurance 

1 2 3 4 

6 8 8 9 

2 3 4 6 

Output buffer 

1 1 



Sort-Merge Join Example 
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1 2 

3 4 

Patient 

2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 3: Merge Patient and Insurance 

1 2 3 4 

6 8 8 9 

2 3 4 6 

Output buffer 

2 2 

Keep going until end of first relation 
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Outline for Today 

•  Join operator algorithms 
– One-pass algorithms (Sec. 15.2 and 15.3) 
–  Index-based algorithms (Sec 15.6) 
– Two-pass algorithms (Sec 15.4 and 15.5) 
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Review: Access Methods 

•  Heap file 
– Scan tuples one at the time 

•  Hash-based index 
– Efficient selection on equality predicates  
– Can also scan data entries in index 

•  Tree-based index 
– Efficient selection on equality or range 

predicates 
– Can also scan data entries in index 
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Index Based Selection 

•  Selection on equality: σa=v(R) 

•  V(R, a) = # of distinct values of attribute a 

•  Clustered index on a:  cost B(R)/V(R,a) 
•  Unclustered index on a: cost T(R)/V(R,a) 

•  Note: we ignored I/O cost for index pages 
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Index Based Selection 

•  Example: 
 

•  Table scan: B(R) = 2,000 I/Os 
•  Index based selection 

–  If index is clustered: B(R)/V(R,a) = 100 I/Os 
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os 

•  Lesson 
–  Don’t build unclustered indexes when V(R,a) is small ! 

B(R) = 2000 
T(R) = 100,000 
V(R, a) = 20 

cost of σa=v(R) = ? 
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Index Nested Loop Join 

R ⋈ S 
•  Assume S has an index on the join attribute 
•  Iterate over R, for each tuple fetch 

corresponding tuple(s) from S 

•  Cost: 
–  If index on S is clustered:  B(R)+T(R)B(S) / V(S,a) 
–  If index on S is unclustered: B(R)+T(R)T(S)/V(S,a) 
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Outline for Today 

•  Join operator algorithms 
– One-pass algorithms (Sec. 15.2 and 15.3) 
–  Index-based algorithms (Sec 15.6) 
– Two-pass algorithms (Sec 15.4 and 15.5) 
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Two-Pass Algorithms 

•  What if data does not fit in memory? 
•  Need to process it in multiple passes 

•  Two key techniques 
– Hashing  
– Sorting 
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Two Pass Algorithms 
Based on Hashing 

•  Idea: partition a relation R into buckets, on disk 
•  Each bucket has size approx. B(R)/M 

M main memory buffers Disk Disk 

Relation R 
OUTPUT 

2 INPUT 

1 

hash 
function 

h M-1 

Partitions 

1 

2 

M-1 
. . . 

1 

2 

B(R) 

•  Does each bucket fit in main memory ? 
– Yes if B(R)/M <= M,   i.e. B(R) <= M2 
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Partitioned (Grace) Hash Join 

R ⋈ S 
•  Step 1: 

– Hash S into M-1 buckets 
– Send all buckets to disk 

•  Step 2 
– Hash R into M-1 buckets 
– Send all buckets to disk 

•  Step 3 
– Join every pair of buckets 
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•  Partition both relations using hash fn h 
•  R tuples in partition i will only match S tuples in 

partition i. 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash 
function 

h M-1 

Partitions 

1 

2 

M-1 

. . . 

Partitioned Hash Join 
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Partitions 
of R & S 

Input buffer 
for Si 

Hash table for partition 
Ri ( < M-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

Partitioned Hash Join 

•  Read in partition of R, hash it using h2 (≠ h) 
•  Build phase 

•  Scan matching partition of S, search for matches 
•  Probe phase 
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Partitioned Hash Join 

•  Cost: 3B(R) + 3B(S) 
•  Assumption: min(B(R), B(S)) <= M2 
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External Sorting 

•  Problem: Sort a file of size B with memory M 

•  Where we need this:  
– ORDER BY in SQL queries 
– Several physical operators 
– Bulk loading of B+-tree indexes.  

•  Sorting is two-pass when B < M2 
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External Merge-Sort: Step 1 

Phase one: load M pages in memory, sort 
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Disk Disk 

. . . . . . 

 
Size M pages 

Main memory 

Runs of length M pages 



External Merge-Sort: Step 2 

Merge M – 1 runs into a new run 
Result: runs of length M (M – 1)≈ M2 
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Disk Disk 

. . . . . . 
Input M 

Input 1 

Input 2 
. . . . 

Output 

If B <= M2  then we are done 
Main memory 
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External Merge-Sort 

•  Cost: 
– Read+write+read = 3B(R) 
– Assumption: B(R) <= M2 

•  Other considerations 
–  In general, a lot of optimizations are 

possible 

49 



Two-Pass Join Algorithm 
Based on Sorting 

Join R ⋈ S 
•  Step 1: sort both R and S on the join attribute: 

–  Cost: 4B(R)+4B(S)  (because need to write to disk) 
•  Step 2: Read both relations in sorted order, 

match tuples 
–  Cost: B(R)+B(S) 

•  Total cost: 5B(R)+5B(S) 
•  Assumption: B(R) <= M2, B(S) <= M2 
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Two-Pass Join Algorithm 
Based on Sorting 

Join R ⋈ S 
•  If B(R) + B(S) <= M2 

–  Or if use a priority queue to create runs of length 2|M| 
•  If the number of tuples in R matching those in S is 

small (or vice versa)  
•  We can compute the join during the merge phase 

•  Total cost: 3B(R)+3B(S)  
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Summary of Join Algorithms 

•  Nested Loop Join: B(R) + B(R)B(S) 
– Assuming page-at-a-time refinement 

•  Hash Join: 3B(R) + 3B(S) 
– Assuming: min(B(R), B(S)) <= M2 

•  Sort-Merge Join: 3B(R)+3B(S) 
– Assuming B(R)+B(S) <= M2 

•  Index Nested Loop Join: B(R)+T(R)B(S)/V(S,a) 
– Assuming S has clustered index on a 
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Summary of Query Execution 
•  For each logical query plan 

– There exist many physical query plans 
– Each plan has a different cost 
– Cost depends on the data 

•  Additionally, for each query 
– There exist several logical plans 

•  Explore on your own: query optimization 
– How to compute the cost of a complete plan? 
– How to pick a good query plan for a query? 
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