CSE 414 Final Exam Sp13 Sample Solution

Question 1. (28 points) SQL. The following database contains information about actors, plays, and roles
performed.

Actor(actor_id, name, year_born)
Play(play_id, title, author, year_written)
Role(actor_id, character name, play id)

Where:

* Actoris a table of actors, their names, and the year they were born. Each actor has a unique
actor_id, which is a key.

* Playis a table of plays, giving the title, author, and year written for each play. Each play has a
unique play_id, which is a key.

* Role records which actors have performed which roles (characters) in which plays. Attributes
actor_id and play_id are foreign keys to Actor and Play respectively. All three attributes make
up the key since it is possible for a single actor to play more than one character in the same play.

(a) (8 points) Write the SQL statements that define the relational schema (tables) for this database.
Assume that actor_id, play_id, year_born, and year_written are all integers, and that name, title, author,
and character_name are strings. Be sure to define appropriate keys and foreign key constraints.

CREATE TABLE Actor (
actor_id INTEGER PRIMARY KEY,
name VARCHAR(100) -- any reasonable SQL character string type is ok
year_born INTEGER

CREATE TABLE Play (
play_id INTEGER PRIMARY KEY,
title VARCHAR(100),
author VARCHAR(100),
year_written INTEGER

CREATE TABLE Role (
actor_id INTEGER REFERENCES Actor(actor_id),
character_name VARCHAR(100),
play_id INTEGER REFERENCES Play(play _id),
PRIMARY KEY(actor_id, character_name, play_id)

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 1 of 13



Actor(actor_id, name, year_born)
Play(play_id, title, author, year_written)
Role(actor_id, character _name, play_id)

Question 1. (cont) (b) (6 points) Write a SQL query that returns the number of actors who have
performed in three or more different plays written by the author “August Wilson”

SELECT count(r.actor_id)

FROM Roler, Play p

WHERE p.author = ‘August Wilson’ AND p.play_id = r.play_id
GROUP BY r.actor_id

HAVING count(DISTINCT r.play_id) > 2

(c) (6 points) Write a SQL query that returns the names of all actors who have performed some play by
the author “Chekhov” and have never performed in any play written by author “Shakespeare”. The list
should not contain duplicates but does not need to be ordered.

SELECT DISTINCT a.name
FROM Actor a, Play p, Role r
WHERE p.author = ‘Chekhov’ AND p.play_id = r.play_id AND r.actor_id = a.actor_id AND
a.actor_id NOT IN (SELECT r2.actor_id
FROM Role r2, Play p2
WHERE p2.author = ‘Shakespeare’ AND p2.play_id = r2.play_id)

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 2 of 13



Actor(actor_id, name, year_born)
Play(play_id, title, author, year_written)
Role(actor_id, character _name, play_id)

Question 1. (cont.) (d) (8 points) The following query returns information about all persons who have
acted in a play that they have written:

SELECT a.name, p.title, r.character_name
FROM Actor a, Play p, Role r
Where a.name = p.author AND a.actor_id = r.actor_id AND p.play_id =r.play_id

Give a relational algebra query plan drawn as a tree that correctly computes this query.

T[a.name, p.title, r.character_name

Dqa.actor_id =r.actor_id and p.play_id=r.play_id

Roler

Ma.name = p.author

Actor a Play p

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 3 of 13



Question 2. (14 points) Bert the Payroll Guy is about to retire after 40 years and it’s time to replace his
manual time card system with some sort of computerized database. You have been asked to come up
with the database design. As best we can tell, the time card system has the following properties:

e Atimecard contains hours worked and date submitted

e Each timecard is associated with exactly one employee

e Each timecard has a unique id

e Each timecard has a status: approved, not approved, or pending (not examined yet)

e Each employee has a name, address, and a unique id

e Each employee submits a time card every pay period. i.e. In 1 year, they will submit multiple
time cards

e Each employee is associated with exactly one manager

e Each manager is also an employee

e Each manager is in charge of one or more employees

e Each manager approves time cards for one or more employees

Draw an ER diagram that captures this information.

ID Status Hours ID Name Address

Submits —) Employee

Date Approves Manages Isa

Manager

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 4 of 13



Question 3. (15 points) Consider the relation with schema R(A,B,C,D,E,F) and the following functional
dependencies (FDs):

A - BC D > AF
(a) (7 points) What are the keys and superkeys of this relation? (Recall that a key is a minimal superkey.)
Justify your answer(s) by showing the closures that are involved, and be sure to clearly label which
superkeys are also keys.

The minimal key is DE since D+=ABCDF and DE+ is ABCDEF

Other superkeys are:

ADE ABDE CDEF
ABCDEF ACDE ABCDE
BDE ADEF BCDEF
CDE BCDE

DEF BDEF

(In grading we gave some slack if not every key was listed since the list is long and it’s easy to miss one
under time pressure. But it was important to identify the key (DE).

(b) (8 points) Is relation R in BCNF? If it is, explain why itis. If it is not, explain why not and give a
decomposition of R into a collection of relations that are in BCNF.

No. Ris in BCNF if, for every non-trivial FD X->Y, we have that X+ = all keys. Or, in other words FD
X->Y violates BCNF if X # X+ # all attributes of R.

In this case, A->BC violates BCNF since A+ = ABC # ABCDEF. So we split R into R1(ABC) and R2(ADEF).
The only non-trivial FD in R1 is A= BC, and A+ = ABC, so R1 is in BCNF.
R2 has a non-trivial dependency D->AF that violates BCNF because D+ = ADF # ADEF. So we split R2

into R21(DAF) and R22(DE). Both of these are in BCNF since they have no non-trivial dependencies
that are not superkeys.

It would also be possible to use the FD D+ = ABCDF # ABCDEF as the initial dependency for the split. In
that case we would get different intermediate steps in the decomposition, but the final results would
be the same.

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 5 of 13



Question 4. (12 points) Cost estimation. Suppose B(R) = 5000, T(R) = 250000, B(S) = 1000, T(S) = 4000,
and M = 1200.

(a) (6 points) What is the expected cost of performing a nested loop join between R and S? If you have
any choices in how to carry out the join operation, pick the strategy with the lowest cost — but be sure it
is a nested loop join. Briefly explain your strategy (pseudo-code would be helpful) and show enough
work so we can understand how you arrived at your answer.

The simple cost estimation we presented in lecture is that if we read a block of each relation at a time,
the cost of joining R and S is B(S) + B(R)B(S). (We can use either R or S as the outer relationship since
join is a commutative operation and, in this case, since S occupies fewer blocks we get a lower cost
that way.)

for each block s in S do
for each block rin R do
for each pair of tuples in r and s, if the pair of tuples join, add them to the result.

In this case we would need 1000+5000*1000 or 5,001,000 disk read operations.

That analysis was enough to get full credit. However, if we take advantage of the memory that is
available, we can reduce the cost to approximately B(S) + B(R)B(S)/(M-1). The idea is to read as many
as M-1 blocks of one relation into memory, then join each block from the other relation to all of the
blocks in memory before reading more of the first relation. So we have something like this:

repeat
read up to M-1 blocks of S into memory
for each block rin R
for each tuple inr, if it joins with any of the tuples of S currently in memory,
add those pairs of tuples to the result.

Since all of relation S will fit in main memory, we can read all of it at once, then join blocks of R to it.
Since we only need one trip around the outer loop, the total cost is approximately B(S) + B(R)B(S)/M
or 1000 + 5000*1000/1000 or 6000.

(b) (6 points) Is it possible to perform a hash join between R and S, given the above values for B(R), B(S),
and M? If so, describe the high-level algorithm steps and compute the cost of the join. If it is not
possible to perform a hash join under these circumstances, explain why not.

Yes. There is enough main memory to hold all of S. So we read S into a hash table at cost B(S) = 1000,

then read the blocks of R at cost B(R) = 5000 and join the tuples to S using a hash lookup instead of
sequentially searching the blocks of S in main memory. The total cost is again 1000+5000 = 6000.

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 6 of 13



Question 5. (12 points) Consider an XML document containing information about job postings and job
applications. The postings are grouped by company, and applications are listed under postings. An
application contains only the applicant's name. For example:

<jobs>
<company>
<name> MicroScience Corp. </name>
<posting>
<jobtitle> sales rep </jobtitle>
<salary> 30000 </salary>
<application> Mark </application>
<application> Lucy </application>
<application> Frank </application>
</posting>
<posting>
<jobtitle> technology consultant </jobtitle>
<salary> 80000 </salary>
<application> Lucy </application>
<application> Fred </application>
<application> Mark </application>
<application> Betty </application>
</posting>
</company>
<company>
<name> MacroConsulting Inc. </name>
<posting>
<jobtitle> technology consultant </jobtitle>
<salary> 40000 </salary> <application> Frank </application>
</posting>
<posting>
<jobtitle> debugger </jobtitle>
<salary> 20000 </salary>
</posting>
<posting>
<jobtitle> programmer analyst </jobtitle>
<salary> 35000 </salary>
<application> Lucy </application>
<application> Mark </application>
</posting>
</company>
</jobs>

Answer questions about this document on the next page. You can remove this page from the exam if
you wish.

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 7 of 13



Question 5. (cont) (a) (6 points) For each of the XPath expressions below, indicate how many answers it
will return on the example XML document on the previous page. For example, if the XPath expression is

/jobs/company[name/text()="'MacroConsulting Inc.']/posting
then your answer should be 3. Your answer to each part should be only a number.
(i) //salary
5
(i) /jobs/company/posting[salary/text()>50000]//application
4
(iii) /jobs/company[posting/salary/text()>50000]//application

7

(b) (6 points) Write an XQuery expression that returns the names of all applicants who have submitted
applications to at least two companies. Your query should return a list of <name> elements inside a root
element <applicants>, and each element should be included only once. For example, if your query were
run on the XML document shown above, it should return

<applicants>
<name>Mark</name>
<name>Lucy </name>
<name>Frank </name>
</applicants>

<applicant>

{

for $Sall in doc("test.xml")/jobs

for Sapplicants in distinct-values($all//application/text())

let Scompany := Sall/company[posting/application/text()=Sapplicants/name/text()]
where count(distinct-values (Scompany)) >= 2

return <name> { Sapplicants } </name>

}

</applicant>

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 8 of 13



Question 6. (12 points, 6 each) Serializibility. For each of the following transaction schedules, draw the
precedence (conflict) graph and decide if the schedule is conflict-serializable. If the schedule is conflict-
serializable, give an equivalent serial schedule (you just need to list the order of transactions, not all the
individual read-write operations, although you can give the full schedule if it is helpful). If the schedule
is not conflict-serializable, explain why not.

(a) ri(A); r2(A); w2(A); r3(B); r2(B); w3(B); w2(B); wi(A)

This is not conflict-serializable. T1 and T2 have RW conflicts in both directions on A, and T2 and T3
similarly have RW conflicts on B. There are cycles in the graph so it is not conflict-serializable.

=00

(b) ri(A); r2(A); r3(B); wi(A); r2(C); r2(B); w2(B); wi(C)

AC B

This schedule is conflict-serializable. T3 must occur before T2 because of a RW conflict on B and T2
must occur before T1 because of RW conflicts on A and C. Since there are no cycles, T3, T2, Tl is an
equivalent serial schedule.

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 9 of 13



Question 7. (12 points) Locking. In an attempt to guarantee conflict-serializable execution of
transactions we introduced the notion of locks. The idea is that transaction i should perform a lock
operation Li(A) on element A before reading or writing that element, then perform an unlock operation
Ui(A) when it is done. But we discovered that this rule was not sufficient to guarantee a serializable
schedule and we needed to use the more complex two-phase locking algorithm (2PL) instead.

(a) (6 points) Give an example showing how the use of simple locks without 2PL is not enough to
guarantee conflict serializibility.

This example from lecture, or something similar, captures the problem.
T1: L1(A), r1(A), wl(A), U1(A)
T2: L2(A), r2(A), w2(A), U2(A), L2(B), r2(B), w2(B), U2(B)

Now if, after T2 finishes, T1 does L1(B), r1(B), w1(B), U1(B), then the resulting schedule is not conflict
serializable since neither serial order T1 before T2 nor T2 before T1 is equivalent to that schedule.

(b) (6 points) What is two phase locking (2PL) and how does it solve the problem(s) you identified in part
(a) above?

2PL requires that all lock requests issued by a transaction must precede any unlock requests.
Although it is possible for transactions to block (or deadlock) with 2PL, if the transaction finishes 2PL
guarantees serializibility because no other transaction can interfere with some of the items being
used by the transaction or read partially updated results while it is working. (There are more formal
ways to state it, but that is the general idea.)

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 10 of 13



Question 8. (15 points) Map-Reduce. We have some very large log files storing information about the
traffic on a computer messaging service. The entries in the Listens(receiver, sender) logrecord
each pair of users where one receives messages sent by the other. For example, the entry (Alice, Bob)
means that Alice receives all messages sent by Bob. Each receiver may listen to messages sent by many
senders, and each sender may have many receivers. Users may receive their own messages, i.e., the
entry (Pat, Pat) means that all messages sent by Pat are also received by Pat.

The other log, Message(sender, contents), contains each message sent on the system and the
name of the sender.

To simplify the problem you can assume that the Listens log is a complete list of the (receiver, sender)
pairs during the entire time that all the messages were sent, and that its contents did not change. You
may also assume there are no duplicate entries in either log.

Describe a sequence of one or more map-reduce jobs (not Pig programs) to count the number of
messages received by each user. The output of the final job should contain one entry for each user and
the number of messages received by that user, i.e., if (Chris, 4217) appears in the final output, it means
that 4217 messages were received by Chris.

You need to clearly describe the (key, value) pairs that are input to and output from each map and
reduce phase of the map-reduce job(s) needed. But the exact format is up to you — it can be pseudo-
code or pseudo-java. But you need to clearly describe the input and output (key, value) pairs from each
map and reduce stage, and explain how the output of each map or reduce stage is computed from its
input. If it takes more than one map-reduce job to compute the final result you should show how the
output of each job is used as input to subsequent ones.

This question turned out to be a little more complex than we anticipated because we need to do the
map-reduce version of a join to solve it. It requires a series of map-reduce jobs, and the first jobs in
the series write records containing “tagged” information that can be merged later.

M-R job 1. Compute the number of messages produced by each sender.

Map 1 input: Message log. Key = sender, Value = message (which we ignore)

Map 1 output: key = sender, value = 1

Reduce 1 input: key = sender, value = [1], i.e., array of 1 values representing messages sent

Reduce 1 output: key = sender, value = tuple (“count”, size of sender’s input array (= # messages sent))

[i.e., the output has, for each sender, the number of messages sent by that user plus the string
“count” which acts as a tag.]

(more space is available on the next page for your answer if needed)

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 11 of 13



Question 8. (cont.) Additional space for your map-reduce algorithm if needed.

M-R job 2. Compute for each sender a list of the users receiving messages from that sender.
Map 2 input: Listens log. Key = receiver, value = sender

Map 2 output: key = sender, value = receiver

Reduce 2 input: key = sender, value = list of receivers

Reduce 2 output: key = sender, value = tuple (“receivers”, list of receivers) [i.e., for each sender a
tagged tuple with a list of all receivers.

M-R Job 3. Combine the information from the previous two jobs to find out how many messages are
received by each listener.

Map 3 input: output files from jobs 1 and 2. Key = sender. Value is either (“count”, number of
messages sent), or (“receivers”, list of receivers).

Map 3 output: For each receiver, key = receiver, value = number of messages sent to that receiver by a
particular sender.

Reduce 3 input: key = receiver, value = array with counts of messages sent by different senders to that
receiver.

Reduce 3 output: key = receiver, value = sum of counts of messages sent to that receiver.

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 12 of 13



Question 9. (8 points) The promised “what does this mean” question. ACID is a collection of four
properties provided by database transactions. For each of the four, give a one- or two-sentence
definition of what that term means. Please be very brief, but precise.

Atomic: Transactions are “all or nothing” — either all parts of a transaction happen, or none of it does.

Consistent: Provided the application logic is correct, a transaction will leave the database in a
consistent state, provided it started in one.

Isolation: Transactions execute as if they had occurred in some serial order isolated from each other.

Durable: Once a transaction has committed, the results of the transaction are permanent.

Question 10. (12 points) Many of the no-SQL file systems that support large-scale parallel execution
guarantee “eventual consistency” rather than the ACID properties.

(a) (6 points) What does this mean? Explain briefly how this can produce different results compared to a
parallel SQL system that guarantees the ACID properties. A very short example might be helpful.

Eventual consistency guarantees that if there are multiple copies of a data object, and that object is
updated, eventually all the copies will be changed to reflect the update. However that is not
guaranteed to happen at once and old values of the data may be visible in some copies for some time
after the change. If the data is read soon after the update, either the new or old value might be
returned. That contrasts with a SQL system with isolation level serializable (i.e., ACID). In that
situation, once a change has been committed, all new transactions will read only the new value.

(b) (6 points) Why is this done? Give a technical reason why no-SQL systems find it useful to provide
eventual consistency rather than ACID guarantees.

Eventual consistency has less overhead than ACID. It is not necessary to lock and update all copies of
a data item simultaneously when it is changed.

CSE 414 Final Exam, June 10, 2013 Sample Solution Page 13 of 13



