CSE 414 Database Systems

Section 5: Midterm Review,
Cost estimation
TA: Daseul Lee (dslee@cs)

Midterm

* Midterm: on Monday, May 6%

 Open book + 1 sheet of paper with
handwritten notes
* Review session
— Time: 2PM on Sunday, May 5t
— Location: LOEW 101
— Q&A session: bring questions with you

Midterm Topics

1. SQL
2. Relational Algebra
3. Query Implementation

1. SQL - Terminology

e Database is a collection of relations

* Relation / Table
— Relation schema: structure of a relation

— Instance: actual data content

 Row / Tuple / Record
e Column / Attribute / Field

1. SQL - Key

e Within a relation:

— Key (candidate key): one or more attributes that
uniquely identifies a record

— Primary key: one candidate key selected for a relation

— Foreign key: one or more attributes that reference a
candidate key from another relation
* logical pointer to a parent table

e Sequential file: how data file is sorted, if at all
* Index file: how index is organized

1. SQL - Syntax

e Basic commands:

— CREATE — creates a new table
ex) CREATE TABLE [table] (...);

— INSERT INTO - inserts new data into a table
ex) INSERT INTO [table] VALUES ([valuel], [value2], ...);

— SELECT - extracts data from a table
ex) SELECT [column(s)] FROM [table_name];

— UPDATE - updates data in a table
ex) UPDATE FROM [table] SET ... WHERE ...;

— DELETE - deletes data from a table
ex) DELETE FROM [table] WHERE ...

1. SQL - Syntax

e Other clauses:
— WHERE
— GROUP BY
— HAVING
— ORDER BY ... [DESC]

* Operators:
— DISTINCT, AS, LIKE, AND, OR, =, >, <....
— EXISTS, NOT EXISTS, IN, NOT IN, ALL, ANY
— JOIN, LEFT OUTER JOIN ... ON ..., etc

1.SQL - Join

* (Inner) Join vs. Outer Join

— Outer Join includes the tuples with no match,
filled with NULL

— Quter Join can be
e Left Quter Join

* Right Outer Join
* Full Outer Join

* Important to carefully select the type of join in
order to query all the data of your interest

1. SQL — Aggregates

SELECT S

FROM Ry,...,R,
WHERE C1
GROUP BY ay,...,a,
HAVING C2

S = may contain attributes a,...,a, and/or any aggregates but
NO OTHER ATTRIBUTES

C1 =is any condition on the attributes in R;,...,R
C2 =is any condition on aggregate expressions
and on attributes a,,...,a,

1. SQL — Aggregates

Aggregate functions:
count(), sum(), avg(), min(), max()

-> applied to a single attribute, except count which can
count the number of rows, i.e. count(*)

Make sure to determine whether you want to
apply the function on duplicate or distinct values.

If used with GROUP BY, then aggregate function
is applied to “each” group.

Otherwise, the function is performed on the
whole output relation.

1. SQL — Nested query

* In SELECT (less common): returns a constant or
computed value

* In FROM (less common): returns a relation,
followed by a variable -> useful for “finding witnesses”

* In WHERE (common): returns a constant or a
relation
— Existential quantifier: EXISTS, IN, ANY

-> easy to un-nest
— Universal quantifier: ALL, NOT EXISTS + [negated

condition in subquery], NOT IN + [negated condition
in subquery]

-> hard to un-nest

1. SQL — Nested query

* “Finding witnesses”: Let’s say we want to query a
tuple that contains the max value on some
attribute x, not the max itself

— Solution 1) have two instances of a table; one for
finding a max and the other for comparing x in each
tuple with the max

— Solution 2) use subquery to return the max value and,
in outer query compare x in each tuple with the max

— Solution 3) use subquery to return x in each tuple and,
in outer query find a tuple s.t. x >= ALL { select x ... }

1. SQL — Indexing

An additional file, that allows fast access to records in the
data file given a search key

Classification

— Clustered / unclustered

— Primary / secondary

— (Organization) Hash table / B+ tree

Trade-offs: faster query vs. slower update

Index selection problem

— Consider workload

— Attributes that appear in WHERE

— Covering index? (multiple attributes)
— Clustered or not?

2. RA — Relational operators

Union U, intersection N, difference - —~
Selection o

Projection [

RA
(Set semantics)

Cartesian product x, join X

P
Duplicate elimination o
Grouping and aggregation vy = RA>
Sorting -~ (Bag semantics)

_/

2. Relational Algebra — More on Joins

* Theta-join: Ry S = 04(R x S)
— Join of R and S with a join condition 0
— Cross-product followed by selection 0
* Equijoin: Ry S =7, (04(R x S))
— Join condition 0 consists only of equalities
— Projection m, drops all redundant attributes
* Natural join: RS =7, (04(R x S))
— Equijoin
— Equality on all fields with same nameinRand in S

2. Relational Algebra — SQL <-> RA

* Given a SQL query, translate it into an equivalent
relational algebra expression or logical query plan
(tree) — or, vice versa

* Can you come up with a more efficient plan?

— In general, joins are expensive; pushing down the
selection before the join can reduce the size of input
tuples, if any.

— And many more optimizations can be done ...

 Nested queries? Try removing a correlation
between the outer query and the inner query

3. Query Implementation

* Logical query plan: an extended relational
algebra tree

— Logical query plan may have several physical
query plans

* Physical query plan: a logical query plan with
extra annotation
1. Access path selection for each relation
2. Implementation choice for each operator

3. Query Implementation —
Physical query plan

1. Access methods: Heap file, Hash-based index,
Tree-based index

2. Operator implementations, ex) Join
— Nested loop join
— Hash jon One-pass or Two-pass algorithm
— Sort-merge join

— Index nested |00p join } Index-based algorithm

One-pass if operator reads its operand only once and no
need to write intermediate results into the disk

3. Query Implementation —
Cost estimation

* Cost: total number of I/O operations
— 1/Os are performed at page (or block) level

* Parameters:

— B(R) = # of blocks for relation R

— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a
* Main constraint:

— M = # of memory (buffer) pages

3. Query Implementation —
Cost estimation on Join operation

Nested Loop Join

— B(R) + T(R) B(S)

— B(R) + B(R)B(S) with Page-at-a-time Refinement
Hash Join

— B(R) + B(S) when B(R) <= M (15 pass)

— 3B(R) + 3B(S) when min(B(R), B(S)) <= M”2 (2"9 pass)
Sort-Merge Join

— B(R) + B(S) when B(S)+B(R) <= M (15t pass)

— 5B(R)+5B(S) when B(R) <= M?2, B(S) <= M*2 (2" pass)
or, 3B(R)+3B(S) when B(R) + B(S) <= M”2 and compute the join
during the merge phase

Index Nested Loop Join
— Ifindex on S is clustered: B(R)+T(R)B(S) / V(S,a)
— If index on S is unclustered: B(R)+T(R)T(S)/V(S,a)

General Tips

Go over lecture notes
Try example problems from the sections

Try old 344 midterms (Do not worry about
datalog and relational calculus)

Bring questions to the review session

Questions?

More on Cost Estimation

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)
Example

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supplier) = 1000 records
T(Supply) = 10,000 records
B(Supplier) = 100 pages
B(Supply) = 100 pages
V(Supplier, scity) = 20
V(Suppliers, state) = 10
V(Supply ,pno) = 2,500

M = 11 pages

* Both relations are clustered

. . _ T(Supplier) = 1000 T(Supply) = 10,000
Supplier(sid, sname, scity, sstate) B(Supplier) = 100 B(Supply) = 100

Supply(sid pno quantr[y) V(Supplier,scity) = 20 V(Suppllers state) = 10

V(Supply,pno) = 2,500
Physical Query Plan 1

(On the fly) T

sname . .
Total cost of plan is thus cost of join:

= B(Supplier)+B(Supplier)*B(Supply)
=100+ 100 * 100
= 10,100 1/0s

(On the fly)
O

scity=‘Seattle’ A sstate="WA’ A pno=2

(Block-nested loop)
(>

sid = sid

N

Supplier Supply
(File scan) (File scan)

. . _ T(Supplier) = 1000 T(Supply) = 10,000
Supplier(sid, sname, scity, sstate) B(Supplier) = 100 B(Supply) = 100

Supply(sid pno quanhty) V(Supplier,scity) = 20 V(Suppllers state) =10

V(Supply,pno) = 2,500
Physical Query Plan 2

(a) Read Supplier + Write T1
(On the fly) T sname (d) =100 + 100 * 1/20 * 1/10 = 101

(b) Read Supply + Write T2
=100+ 100 * 1/2500 = 101

C o (c) sort-merge joinon T1 & T2=2
(Sort-merge jOIn) = (C) (d) onthe fly=0

sid = sid
Total cost = 204 1/0s

(Scan (Scan
write to T1) erte to T2)

(a)o

scity=‘Seattle’ asstate= ‘WA’ (b) O pNo=2
T1 and T2 has
. ‘ at most one
Supplier Supply page each

(File scan) (File scan)

. . _ T(Supplier) = 1000 T(Supply) = 10,000
Supplier(sid, sname, scity, sstate) B(Supplier) = 100 B(Supply) = 100

Supply(sid, pno, quantity) V(Supplier,scity) = 20 V(gﬂgg:;a; z,;atez) 20100

Physical Query Plan 3

(Onthefly) (d) =

sname
(a) 100 /2500 = 1

(On the fly) . Eb))g* t=a
c
(¢) o scity= ‘Seattle’ asstate= ‘WA’ (d)O
Total cast = 5 1/Os

g

S,d -sg (Index nested loop)

(Use mdex) / 4 tuples selected from (a)
(a) o pno —5 .For each tuple, perform
index look up on Supplier

Supply Supplier

(Index lookup on pno) (Index lookup on sid)
Assume: clustered Doesn’ t matter if clustered or not

