Introduction to Database Systems
CSE 414

Lecture 29: NoSQL

CSE 414 - Spring 2013

Announcements
« HWS8 due Friday, 11 pm

— No late assignments. At all.

 Final exam:
— Mon. 6/10, 2:30-4:20, this room
— Comprehensive

— Same rules as before: open textbook + 1 sheet of
handwritten notes (+ midterm sheet), nothing else

e Review:

— |In sections tomorrow
— Extra Q&A Sunday, 6/9, 2 pm, Loew 101

CSE 414 - Spring 2013

Where We Are

Well... we are nearly done
No more web quizzes
Only hw8 left

Friday: course review and final exam topics

Today: NoSQL!

CSE 414 - Spring 2013

References

« Scalable SQL and NoSQL Data Stores, Rick
Cattell, SIGMOD Record, December 2010 (Vol. 39,
No. 4)

- Bigtable: A Distributed Storage System for
Structured Data. Fay Chang, Jeffrey Dean, et. al.
OSDI 2006

* Online documentation: Amazon SimpleDB, Google
App Engine Datastore, etc.

CSE 414 - Spring 2013

NoSQL Motivation

 Originally motivated by Web 2.0 applications

* Goal is to scale simple OLTP-style workloads
to thousands or millions of users

« Users are doing both updates and reads

CSE 414 - Spring 2013

What is the Problem?

Scaling a relational DBMS is hard

We saw how to scale queries with parallel DBMSs
Much more difficult to scale transactions
Because need to ensure ACID properties

— Hard to do beyond a single machine

CSE 414 - Spring 2013 6

Scaling Transactions
* Need to partition the db across machines

* |f a transaction touches one machine
— Life is good

* |f a transaction touches multiple machines
— ACID becomes extremely expensive!
— Need two-phase commit

CSE 414 - Spring 2013

Two-Phase Commit: Motivation

Coordinator

1) User decides 2) QI\/IMIT Subordinate 1

to commit

°0

3) COMMIT

4) Coordinator Each subordinate

crashes holds fraction of
database
? :
What do we do now" Subordinate 2

‘ But | already aborted!

Subordinate 3 | Example: Each node holds
some subset of bank accounts
Transaction transfers money

2PC: Phase 1 lllustrated

Coordinator
1) User decide 2) iEPARE Subordinate 1
to commit 3 YEo— @
2) PREPARE

3) YES
3) YES Q'
) PREPARE Subordinate 2

Subordinate 3

CSE 414 - Spring 2013

2PC: Phase 2 lllustrated

Coordinator
2) EMMIT Subordinate 1
Ak —_ @

2) COMMIT

Transaction is
now committed!

3) ACK

) COMMITQ. Subordinate 2

Subordinate 3

3) ACK

CSE 414 - Spring 2013

10

Scale Through Replication?

Create multiple copies of each database partition

Spread queries across these replicas

Can increase throughput and lower latency

Easy for reads but writes, once again, become expensive!

Some

Other
requests

requests

Three replicas
CSE 414 - Spring 2013 11

NoSQL Key Feature Decisions

 Want a data management system that is

— Elastic and highly scalable

— Flexible (different records have different schemas)
* To achieve above goals, willing to give up

— Complex queries: e.g., give up on joins

— Multi-object transactions

— ACID guarantees: e.g., eventual consistency is OK
— Not all NoSQL systems give up all these properties

CSE 414 - Spring 2013 12

Cattell, SIGMOD Record 2010
“‘Not Only SQL” or “Not Relational”

Six key features:

1. Scale horizontally “simple operations”

— key lookups, reads and writes of one record or a
small number of records, simple selections

2. Replicate/distribute data over many servers
3. Simple call level interface (contrast w/ SQL)
4. Weaker concurrency model than ACID

5. Efficient use of distributed indexes and RAM
6. Flexible schema

CSE 414 - Spring 2013 13

Cattell, SIGMOD Record 2010
Terminology

- Sharding = horizontal partitioning by some
key, and storing records on different servers
In order to improve performance

* Horizontal scalability = distribute both data

and load over many servers
» Vertical scaling = when a dbms uses multiple

cores and/or CPUs
CSE 414 - Spring 2013 14

ACID Vs BASE

« ACID = Atomicity, Consistency, Isolation, and
Durability

 BASE = Basically Available, Soft state,
Eventually consistent

CSE 414 - Spring 2013 15

Data Models

Tuple = row in a relational database

Document = nested values, extensible records (think
XML, JSON, attribute-value pairs)

Extensible record = families of attributes have a
schema, but new attributes may be added

Object = like in a programming language, but without
methods

CSE 414 - Spring 2013 16

Cattell, SIGMOD Record 2010

Different Types of NoSQL

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2013

17

Key-Value Stores Features

Data model: (key,value) pairs
— A single key-value index for all the data

Operations
— Insert, delete, and lookup operations on keys

Distribution / Partitioning

— Distribute keys across different nodes
Other features

— Versioning

— Sorting

CSE 414 - Spring 2013

18

Key-Value Stores Internals

Data remains in main memory
One type of impl.: distributed hash table
Most systems also offer a persistence option

Others use replication to provide fault-tolerance
— Asynchronous or synchronous replication
— Tunable consistency: read/write one replica or majority

Some offer ACID transactions others do not
Multiversion concurrency control or locking

CSE 414 - Spring 2013 19

Cattell, SIGMOD Record 2010

Different Types of NoSQL

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2013

20

Amazon SimpleDB

A Document Store

* Partitioning
— Data partitioned into domains: queries run within a domain
— Domains seem to be unit of replication. Limit 10GB
— Can use domains to manually create parallelism

e Data Model / Schema

— No fixed schema
— Objects are defined with attribute-value pairs

CSE 414 - Spring 2013

21

Amazon SimpleDB (2/3)

* Indexing
— Automatically indexes all attributes

« Support for writing
— PUT and DELETE items in a domain

select output list

o Support for querying from domain name
[where expression]
- GET by key [sort instructions]
— Selection + sort [limit limit]

— A simple form of aggregation: count

— Query is limited to 5s and 1MB output (but can continue)
CSE 414 - Spring 2013 22

Amazon SimpleDB (3/3)

« Availability and consistency

— “Fully indexed data is stored redundantly across multiple
servers and data centers”

— “Takes time for the update to propagate to all storage
locations. The data will eventually be consistent, but an
immediate read might not show the change”

— Today, can choose between consistent or eventually
consistent read

CSE 414 - Spring 2013

23

Cattell, SIGMOD Record 2010

Different Types of NoSQL

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2013

24

Extensible Record Stores

Based on Google’s BigTable
Data model is rows and columns

Scalability by splitting rows and columns over nodes

— Rows partitioned through sharding on primary key

— Columns of a table are distributed over multiple nodes by
using “column groups”

HBase is an open source implementation of BigTable

CSE 414 - Spring 2013 25

What is Bigtable?

 Distributed storage system

* Designed to
— Hold structured data
— Scale to thousands of servers
— Store up to several hundred TB (maybe even PB)
— Perform backend bulk processing
— Perform real-time data serving

« To scale, Bigtable has a limited set of features

CSE 414 - Spring 2013 26

Chang, OSDI 2006

Bigtable Data Model

« Sparse, multidimensional sorted map

(row:string, column:string, time:int64)=» string
Notice how everything but time is a string

Columns are grouped into families

« Example from Fig 1: I
"contlents:" / "anchor:clnnsi.com" "anchor:lmy.look.ca" \
oy }___{__;_______J___ﬁ____i ______
"com.chn.www" —* | {,ﬂi{ | 'CNN" I<— t | "CNN.com"]<— tg
<htmb>fle e T | |

CSE 414 - Spring 2013 27

Chang, OSDI 2006

BigTable Key Features

Read/writes of data under single row key is atomic
— Only single-row transactions!

Data is stored in lexicographical order
— Improves data access locality

Column families are unit of access control

Data is versioned (old versions garbage collected)
— EX: most recent three crawls of each page, with times

CSE 414 - Spring 2013 28

Chang, OSDI 2006

BigTable AP

« Data definition
— Creating/deleting tables or column families
— Changing access control rights

« Data manipulation
— Writing or deleting values
— Supports single-row transactions
— Looking up values from individual rows

— lterating over subset of data in the table
» Can select on rows, columns, and timestamps

CSE 414 - Spring 2013

29

Cattell, SIGMOD Record 2010
Megastore
« BigTable is implemented, used within Google

« Megastore is a layer on top of BigTable
— Transactions that span nodes
— A database schema defined in a SQL-like language
— Hierarchical paths that allow some limited joins

 Megastore is made available through the
Google App Engine Datastore

CSE 414 - Spring 2013 30

Google App Engine
* “Run your web applications on Google's infrastructure”

« Limitation: app must be written in Python or Java

« Key features (examples for Java)

— A complete development stack that uses familiar technologies to
build and host web applications

— Includes: Java 6 JVM, a Java Servlets interface, and support for
standard interfaces to the App Engine scalable datastore and
services, such as JDO, JPA, JavaMail, and Jcache

— JVM runs in a secured "sandbox" environment to isolate your
application for service and security (some ops not allowed)

CSE 414 - Spring 2013 31

Google App Engine Datastore (1/3)

“Distributed data storage service that features a query
engine and transactions”

Partitioning
— Data partitioned into “entity groups”

— Entities of the same group are stored together for efficient
execution of transactions

Data Model / Schema

— Each entity has a key and properties that can be either
« Named values of one of several supported data types (includes list)
» References to other entities

— Flexible schema: different entities can have different properties

CSE 414 - Spring 2013 32

Google App Engine Datastore (2/3)

* Indexing
— Applications define indexes: must have one index per query type

« Support for writing
— PUT and DELETE entities (for Java, hidden behind JDO)

« Support for querying
— GET an entity using its key
— Execute a query: selection + sort
— Language bindings: invoke methods or write SQL-like queries
— Lazy query evaluation: query executes when user accesses results

CSE 414 - Spring 2013 33

Google App Engine Datastore (3/3)

« Availability and consistency

— Every datastore write operation (put/delete) is atomic

» Outside of transactions, get READ_COMMITTED isolation
— Support transactions (many ops on many objects)

» Single-group transactions

» Cross-group transactions with up to 5 groups

» Transactions use snapshot isolation

« Transactions use optimistic concurrency control

CSE 414 - Spring 2013

34

Cattell, SIGMOD Record 2010

Different Types of NoSQL

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 414 - Spring 2013

35

