Introduction to Database Systems
CSE 414

Lecture 27: Map Reduce,
slides on Pig Latin



Announcements

Last webquiz due tonight, 11 pm
HW8 due on Friday

— Try to make lots of progress over weekend

Final exam:
— Mon. 6/10, 2:30-4:20, this room
— Comprehensive

— Same rules as before: open textbook + 1 sheet of
handwritten notes (+ midterm sheet), nothing else

Review session:
— Sunday, 6/9, 2 pm, Room TBD



Outline

* Aclever parallel evaluation algorithm

« Parallel Data Processing at Massive Scale
— MapReduce

— Reading assignment:
Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Uliman
http://i.stanford.edu/~ullman/mmds.html

« Assignment: learn Pig Latin for HW8 from the
lecture notes, example starter code, and the
Web; will discuss (too) briefly in class




A Challenge

-Have P servers (say P=27 or P=1000)

“How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)




A Challenge

-Have P servers (say P=27 or P=1000)

“How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

This computes all “triangles”.

E.g. let Follows(x,y) be all pairs of Twitter
users s.t. x follows y. Let R=S=T=Follows.
Then Q computes all triples of people that
follow each other.
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A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,2) = R(x,y),S(y,2), T(z,x)
Step 1:
— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P
Step 2:
— Each server computes R<S locally
— Each server sends [R(x,y),S(y,z)] to h(x) mod P
— Each server sends T(z,x) to h(x) mod P

Final output:
— Each server computes locally and outputs R=S>T
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Q(x,y,2) = R(x,y),S(y,z), T(z,X)
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Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,z), T(z,x)

Organize the P servers into a cube with side P”

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”
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A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),3(y,z), T(z,X)

Organize the P servers into a cube with side P*

— Thus, each server is uniquely identified by (i,,k), i,j,kSP%

Step 1:
— Each server sends R(x,y) to all servers (h(x),h(y),”)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output: / i
— Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally
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A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),3(y,z), T(z,X)

Organize the P servers into a cube with side P*

— Thus, each server is uniquely identified by (i,,k), i,j,kSP%

Step 1:
— Each server sends R(x,y) to all servers (h(x),h(y),”)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:
— Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

Analysis: each tuple R(x,y) is replicated at most P”: times




Parallel Data Processing
at Massive Scale



Data Centers Today

» Data Center: Large number of commodity
servers, connected by high speed,
commodity network

« Rack: holds a small number of servers

» Data center: holds many racks



Data Processing
at Massive Scale

* Want to process petabytes of data and more

* Massive parallelism:

— 100s, or 1000s, or 10000s servers
— Many hours

 Failure:
— If medium-time-between-failure is 1 year
— Then 10000 servers have one failure / hour



Distributed File System (DFS)

* For very large files: TBs, PBs

« Each file is partitioned into chunks,
typically 64MB

* Each chunk is replicated several times
(23), on different racks, for fault tolerance
* Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source



MapReduce

* Google: paper published 2004
* Free variant. Hadoop

 MapReduce = high-level programming
model and implementation for large-scale
parallel data processing



Observation: Your favorite parallel algorithm...

1 1 ! !

Reduce

e I
SEEEEE

CSE 414 - Spring 2013
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Typical Problems Solved by MR

« Read a lot of data

» Map: extract something you care about
from each record

 Shuffle and Sort

» Reduce: aggregate, summarize, filter,
transform Outline stays the same,

. . map and reduce change to

Write the results .\ oroblem

slide source: Jeff Dean



Data Model

Files |
Afile = a bag of (key, wvalue) pairs
A MapReduce program:

* Input: a bag of (inputkey, wvalue)pairs
* Qutput: a bag of (outputkey, walue) pairs



Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, wvalue)

* Ouput:
bag of (intermediate key, wvalue)

System applies the map function in parallel
to all (input key, wvalue) pairsin
the input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:

* Input:
(Lntermediate key, bag of wvalues)

* Qutput: bag of output (values)

System groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

CSE 414 - Spring 2013 23



Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document

— The key = document id (did)
— The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “1”);

reduce(String key, lterator values):
// key: a word
// values: a list of counts
int result =0;
for each vin values:
result += Parselnt(v);
Emit(AsString(result));



MAP

(did1,v1)|—>

(did2,v2)| —>

(did3,v3)|—>

(Bob, 1)

(the, 1)

(Bob,1)

(of,1)

(to,1)

Shuffle

REDUCE

(of, (1,1,1,...,1))

(the, (1,1,...))

(of, 25)

(Bob,(1...))

(the, 77)

(Bob, 12)

/A
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Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all
docs

— More complex queries may consists of multiple
jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker



Workers

A worker is a process that executes one
task at a time

» Typically there is one worker per
processor, hence 4 or 8 per node



MapRJ@duce Job

MAP Tasks REDUCE Tasks

v
——[ewn| Shuffle /

(did1,v1) | > wen

(of, 25)

(the, 77)

(Bob, 12)

by oy

——> | (to,1) — |

— 2| (Bob,1) ¥ | (of, (1,1,1,...,1))
(the, (1,1,...))
(did2,v2) | 77 [ A | Bob(1..)

(did3,v3) |—>

(Bob, 1) 2|




MapReduce Execution Detalls
. we

Reduce Task —
(Shuffle)

Map Task
Data not
necessarily local
>
File system: GFS
or HDFS
CSE 414 - Spring 2013 :




MR Phases

Each Map and Reduce task has multiple phases:

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

‘Splitﬂ Record Reader—Map —.>:Combine:—-—>‘ Copy i—bw—»‘ Reduce \
D

1

l file
Local storage ———
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Example: CloudBurst

SIOt 'l\ll-l%p Sort Reduce
—————

OO OO O T O

>

Time

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

31



Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M
map tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks



Interesting Implementation Details

Worker failure:
» Master pings workers periodically,

* |f down then reassigns the task to another
worker



Interesting Implementation Details

Backup tasks:

« Straggler = a machine that takes unusually
long time to complete one of the last tasks.
Eg:

— Bad disk forces frequent correctable errors
(30MB/s - 1MB/s)

— The cluster scheduler has scheduled other tasks
on that machine

» Stragglers are a main reason for slowdown

» Solution: pre-emptive backup execution of
the last few remaining in-progress tasks



MapReduce Summary

* Hides scheduling and parallelization
details

 However, very limited queries
— Difficult to write more complex queries
— Need multiple MapReduce jobs

» Solution: declarative query language



Declarative Languages on MR

» PIG Latin (Yahoo!)

— New language, like Relational Algebra
— Open source

» HiveQL (Facebook)
— SQL-like language
— Open source
« SQL / Dremmel / Tenzing (Google)

— SQL on MR
— Proprietary



Parallel DBMS vs MapReduce

« Parallel DBMS
— Relational data model and schema
— Declarative query language: SQL
— Many pre-defined operators: relational algebra
— Can easily combine operators into complex queries
— Query optimization, indexing, and physical tuning
— Streams data from one operator to the next without blocking

— Can do more than just run queries: Data management
« Updates and transactions, constraints, security, etc.



Parallel DBMS vs MapReduce

 MapReduce

Data model is a file with key-value pairs!

No need to “load data” before processing it

Easy to write user-defined operators

Can easily add nodes to the cluster (no need to even restart)
Uses less memory since processes one key-group at a time
Intra-query fault-tolerance thanks to results on disk
Intermediate results on disk also facilitate scheduling
Handles adverse conditions: e.g., stragglers

Arguably more scalable... but also needs more nodes!



Pig Latin Mini-Tutorial

(quick survey in class, but need to
study outside in order to do
homework 8)

CSE 414 - Spring 2013
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Pig Latin Overview

« Data model = loosely typed nested relations
* Query model = a SQL-like, dataflow language

 Execution model:

— Option 1: run locally on your machine; e.g. to debug
* In HWG6, debug with option 1 directly on Amazon
— Option 2: compile into graph of MapReduce jobs,
run on a cluster supporting Hadoop

40



Example

 Input: a table of urls:
(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each
category

* Return the answers only for categories
with sufficiently many such pages

41



Page(url, category, pagerank)

First in SQL...

SELECT category, AVG(pagerank)
FROM Page

WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 106
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Page(url, category, pagerank)

...then in Pig-Latin

good urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

BY COUNT(good urls) > 106
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank

CSE 414 - Spring 2013 43



Types in Pig-Latin

Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘'manager’), ...}

Maps: we will try not to use these

44



Types in Pig-Latin

Tuple components can be referenced by
number

- $0, $1, $2, ...

Bags can be nested! Non 15t Normal Form
» {(@’, {1,4,3}), (c'{}), (d, {2,2,5,3,2})}

45



[Olston’2008]

‘lakers’, 1)
- ( . ) ( : ¢ )
t ( alice ,{ (‘iPod’, 2) }{ age —>2OJ)
Let fields of tuple t be called f1, £2, £3
Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20
- (‘lakers’)
Projection £2.$0 { (‘iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
Conditional f3#‘age’>187 )
. dult’
Expression ‘adult’: ‘minor’ add
. ‘lakers’, 1
Flattening FLATTEN(£2) ‘iPod’, 2




[Olston’2008]

Loading data

* Input data = FILES !
— Heard that before ?

« The LOAD command parses an input file
into a bag of records

» Both parser (="deserializer”) and output
type are provided by user

For HW6: simply use the code provided

47



[Olston’2008]

Loading data

qgueries = LOAD ‘query_log.txt’
USING myLoad( )
AS (userlD, queryString, timeStamp)

Pig provides a set of built-in load/store functions

A = LOAD 'student’ USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);

same as
A = LOAD 'student’' AS (name: chararray, age:int, gpa: float);
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[Olston’2008]

Loading data

« USING userfuction( ) --is optional
— Default deserializer expects tab-delimited file

* AS type — is optional

— Default is a record with unnamed fields; refer to them
as %0, $1, ...

* The return value of LOAD is just a handle to a bag
— The actual reading is done in pull mode, or parallelized

49



[Olston’2008]

FOREACH

expanded_queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery( ) is a UDF that produces likely expansions
Note: it returns a bag, hence expanded queries is a nested bag
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[Olston’2008]

FOREACH

expanded_queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection
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[Olston’2008]

queries:
(userld, queryString, timestamp) 3
FOREACH gueries GENERATE ( alice, (g';ﬁ:i S"ﬁ';":;)
(alice, lakers, 1) expandQuery(queryString) J

(bob, iPod, 3)

(without flattening) > (iPod nano) )
bob, ~(iPod shuffle) -

-

. . (alice, lakers rumors)
with ﬂattenmg’ (alice, lakers news)
(bob, 1Pod nanc)
(bob, 1Pod shuffle)
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[Olston’2008]

FLATTEN

Note that it is NOT a normal function !
(that’s one thing questionable about Pig-latin)

« Anormal FLATTEN would do this:
— FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
— Its type is: {{T}} =2 {T}
* The Pig Latin FLATTEN does this:
— FLATTEN({4,5,6}) =4, 5, 6
—Whatisits Type? {T} > T, T, T, ..., T P7?°7°7°



[Olston’2008]

FILTER

Remove all queries from Web bots:

real _queries = FILTER queries BY userld neq ‘bot’ I

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userid)
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[Olston’2008]

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}
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[Olston’2008]

results:
(queryString, url, rank)

(lakers, nba.com, 1)
(lakers, espn.com, 2) _
(kings, nhl.com, 1)
(kings, nba.com, 2) =——+—

revenue.

(queryString, adSlot, amount)
(lakers, nba.com, 1, top , 50)

(lakers, top, 50) — (lakers, nba.com, 1, side, 20)
(lakers, side, 20) \ 4 (lakers, espn.com, 2, top, 50)
>
(kings, top, 3@) JOIN (lakers, espn.com, 2, side, 20)
(kings, side, 10) L.
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[Olston’2008]

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =

FOREACH grouped revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
query _revenues: {(queryString, totalRevenue)}
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[Olston’2008]

Simple MapReduce

input : {(field1, field2, field3, ... .)}
map_result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map_result BY $0

output = FOREACH key_ groups
GENERATE $0, reduce($1)

map_result : {(a1, a2, a3, .. .)}
key groups : {(al, {(a2, a3, .. .)})}

CSE 414 - Spring 2013 58



[Olston’2008]

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped _data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ?
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results:

(queryString, url, rank) (10kers
(lakers, nba.com, 1) COGROUP (

(lakers, espn.com, 2)

(kings, nhl.com, 1)
(kings, nba.com, 2) —r

revenue:
(queryString, adSlot, amount)

(lakers, top, 50) ——
(lakers, side, 20).
(kings, top, 3@)
(kings, side, 1@)

Co-Group

[Olston’2008]

grouped_data: (group, results, revenue)

-
(lakers, nba.com, 1)
lakers, espn.com, 2)

-

(kings, nba.com, 2)

e
kings, {:(k}ngs, nhl.com, 1) .

-

A

A

(lakers, top, 50)
(lakers, side, 20)

——

(kings, top, 30)
(kings, side, 10)

S

Is this an inner join, or an outer join ?

CSE 414 - Spring 2013
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[Olston’2008]

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

CSE 414 - Spring 2013 61



[Olston’2008]
Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN
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[Olston’2008]

Asking for Output: STORE

STORE query revenues INTO myoutput’
USING myStore();

Meaning: write query_revenues to the file ‘'myoutput’

CSE 414 - Spring 2013 63



[Olston’2008]
Implementation

Over Hadoop !

Parse query:

— Everything between LOAD and STORE -
one logical plan

Logical plan - graph of MapReduce ops

All statements between two (CO)GROUPs
- one MapReduce job
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[Olston’2008]
Implementation

map, reduce, map; reduce;map;,, reduce;,,
load » filter » group ------------ » cogroup ----p cogr':om —>
Cl ." ci cl+1
load
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