
Introduction to Database Systems 
CSE 414 

Lecture 27: Map Reduce,  
slides on Pig Latin 
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Announcements 
•  Last webquiz due tonight, 11 pm 
•  HW8 due on Friday 

– Try to make lots of progress over weekend 
•  Final exam: 

– Mon. 6/10, 2:30-4:20, this room 
– Comprehensive 
– Same rules as before: open textbook + 1 sheet of 

handwritten notes (+ midterm sheet), nothing else 
•  Review session:  

– Sunday, 6/9, 2 pm, Room TBD 
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Outline 
•  A clever parallel evaluation algorithm 
•  Parallel Data Processing at Massive Scale 

– MapReduce 
– Reading assignment: 

Chapter 2 (Sections 1,2,3 only) of Mining of 
Massive Datasets, by Rajaraman and Ullman 
http://i.stanford.edu/~ullman/mmds.html  

•  Assignment: learn Pig Latin for HW8 from the 
lecture notes, example starter code, and the 
Web; will discuss (too) briefly in class 
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A Challenge 

•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
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A Challenge 

•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 

•  This computes all “triangles”.  
•  E.g. let Follows(x,y) be all pairs of Twitter 

users s.t. x follows y.  Let R=S=T=Follows.  
Then Q computes all triples of people that 
follow each other. 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Step 1: 

–  Each server sends R(x,y) to server h(y) mod P 
–  Each server sends S(y,z) to server h(y) mod P 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Step 1: 

–  Each server sends R(x,y) to server h(y) mod P 
–  Each server sends S(y,z) to server h(y) mod P 

•  Step 2:  
–  Each server computes R⋈S locally 
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P 
–  Each server sends T(z,x) to h(x) mod P 

CSE 414 - Spring 2013    7 



A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Step 1: 

–  Each server sends R(x,y) to server h(y) mod P 
–  Each server sends S(y,z) to server h(y) mod P 

•  Step 2:  
–  Each server computes R⋈S locally 
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P 
–  Each server sends T(z,x) to h(x) mod P 

•  Final output: 
–  Each server computes locally and outputs R⋈S⋈T 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

i 

j 
k 

(i,j,k) 

P⅓ 1 



A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 

•  Final output: 
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 

•  Final output: 
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally 

•  Analysis: each tuple R(x,y) is replicated at most P⅓ times 
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Parallel Data Processing 
at Massive Scale 
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Data Centers Today 

•  Data Center: Large number of commodity 
servers, connected by high speed, 
commodity network 

•  Rack: holds a small number of servers 

•  Data center: holds many racks 
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Data Processing 
at Massive Scale 

•  Want to process petabytes of data and more 

•  Massive parallelism:  
–  100s, or 1000s, or 10000s servers 
– Many hours 

•  Failure: 
–  If medium-time-between-failure is 1 year 
– Then 10000 servers have one failure / hour 
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Distributed File System (DFS) 

•  For very large files: TBs, PBs 
•  Each file is partitioned into chunks, 

typically 64MB 
•  Each chunk is replicated several times 

(≥3), on different racks, for fault tolerance 
•  Implementations: 

– Google’s DFS:  GFS, proprietary 
– Hadoop’s DFS:  HDFS, open source 
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MapReduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  MapReduce = high-level programming 
model and implementation for large-scale 
parallel data processing 
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Observation: Your favorite parallel algorithm… 

Map 

(Shuffle) 

Reduce 
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Typical Problems Solved by MR 

•  Read a lot of data 
•  Map: extract something you care about 

from each record 
•  Shuffle and Sort 
•  Reduce: aggregate, summarize, filter, 

transform 
•  Write the results 
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Outline stays the same, 
map and reduce change to 
fit the problem 

slide source: Jeff Dean 



Data Model 

Files ! 

A file = a bag of (key, value) pairs 

A MapReduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input key, value) 
•  Ouput:  

bag of (intermediate key, value) 

System applies the map function in parallel 
to all (input key, value) pairs in 
the input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input:  
(intermediate key, bag of values) 

•  Output: bag of output (values) 
 
System groups all pairs with the same 

intermediate key, and passes the bag of 
values to the REDUCE function 
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Example 

•  Counting the number of occurrences of each 
word in a large collection of documents 

•  Each Document 
–  The key = document id (did) 
–  The value = set of words (word) 

map(String	
  key,	
  String	
  value):	
  
//	
  key:	
  document	
  name	
  
//	
  value:	
  document	
  contents	
  
for	
  each	
  word	
  w	
  in	
  value:	
  

	
  EmitIntermediate(w,	
  “1”);	
  

reduce(String	
  key,	
  Iterator	
  values):	
  
//	
  key:	
  a	
  word	
  
//	
  values:	
  a	
  list	
  of	
  counts	
  
int	
  result	
  =	
  0;	
  
for	
  each	
  v	
  in	
  values:	
  

	
  result	
  +=	
  ParseInt(v);	
  
Emit(AsString(result));	
  



MAP REDUCE 

(Bob,1) 

(the,1) 

(Bob,1) 

… 

(of,1) 

(to,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(of, (1,1,1,…,1)) 

(the, (1,1,…)) 

(Bob,(1…)) 

… 

… 

… 

… 

(of, 25) 

(the, 77) 

(Bob, 12) 

… 

… 

… 

… 

Shuffle 
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Jobs v.s. Tasks 

•  A MapReduce Job 
– One single “query”, e.g. count the words in all 

docs 
– More complex queries may consists of multiple 

jobs 

•  A Map Task, or a Reduce Task 
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker 
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Workers 

•  A worker is a process that executes one 
task at a time 

•  Typically there is one worker per 
processor, hence 4 or 8 per node 
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MAP Tasks REDUCE Tasks 

(Bob,1) 

(the,1) 

(Bob,1) 

… 

(of,1) 

(to,1) 

… 

(Bob,1) 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(of, (1,1,1,…,1)) 

(the, (1,1,…)) 

(Bob,(1…)) 

… 

… 

… 

… 

(of, 25) 

(the, 77) 

(Bob, 12) 

… 

… 

… 

… 

Shuffle 

MapReduce Job 



MapReduce Execution Details 
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Map 

(Shuffle) 

Reduce 

Data	
  not	
  
necessarily	
  local	
  

Intermediate	
  data	
  
goes	
  to	
  local	
  	
  disk	
  

Output	
  to	
  disk,	
  
replicated	
  in	
  cluster	
  

File	
  system:	
  GFS	
  
or	
  HDFS	
  

Task 

Task 



Local	
  storage	
  `	
  

MR Phases 

•  Each Map and Reduce task has multiple phases: 
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Example: CloudBurst 

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers. 

Map Reduce Sort Shuffle Slot ID 

Time 

31 



Implementation 

•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M 

map tasks, keeps track of their progress 
•  Workers write their output to local disk, 

partition into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
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Interesting Implementation Details 

Worker failure: 

•  Master pings workers periodically, 

•  If down then reassigns the task to another 
worker 
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Interesting Implementation Details 
Backup tasks: 
•   Straggler = a machine that takes unusually 

long time to complete one of the last tasks. 
Eg: 
– Bad disk forces frequent correctable errors 

(30MB/s à 1MB/s) 
– The cluster scheduler has scheduled other tasks 

on that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of 

the last few remaining in-progress tasks 
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MapReduce Summary 

•  Hides scheduling and parallelization 
details 

•  However, very limited queries 
– Difficult to write more complex queries 
– Need multiple MapReduce jobs 

•  Solution: declarative query language 
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Declarative Languages on MR 

•  PIG Latin (Yahoo!) 
– New language, like Relational Algebra 
– Open source 

•  HiveQL (Facebook) 
– SQL-like language 
– Open source 

•  SQL / Dremmel / Tenzing (Google) 
– SQL on MR 
– Proprietary 
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Parallel DBMS vs MapReduce 

•  Parallel DBMS 
–  Relational data model and schema 
–  Declarative query language: SQL 
–  Many pre-defined operators: relational algebra 
–  Can easily combine operators into complex queries 
–  Query optimization, indexing, and physical tuning 
–  Streams data from one operator to the next without blocking 
–  Can do more than just run queries: Data management 

•  Updates and transactions, constraints, security, etc. 
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Parallel DBMS vs MapReduce 

•  MapReduce 
–  Data model is a file with key-value pairs! 
–  No need to “load data” before processing it 
–  Easy to write user-defined operators 
–  Can easily add nodes to the cluster (no need to even restart) 
–  Uses less memory since processes one key-group at a time 
–  Intra-query fault-tolerance thanks to results on disk 
–  Intermediate results on disk also facilitate scheduling 
–  Handles adverse conditions: e.g., stragglers 
–  Arguably more scalable… but also needs more nodes! 
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Pig Latin Mini-Tutorial 

(quick survey in class, but need to 
study outside in order to do 

homework 8) 
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Pig Latin Overview 

•  Data model = loosely typed nested relations 
•  Query model = a SQL-like, dataflow language 

•  Execution model: 
– Option 1: run locally on your machine; e.g. to debug 

•  In HW6, debug with option 1 directly on Amazon 
– Option 2: compile into graph of MapReduce jobs, 

run on a cluster supporting Hadoop 
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Example 

•  Input: a table of urls:  
 (url, category, pagerank) 

•  Compute the average pagerank of all 
sufficiently high pageranks, for each 
category 

•  Return the answers only for categories 
with sufficiently many such pages 
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First in SQL… 

42 

SELECT category, AVG(pagerank) 
FROM Page 
WHERE pagerank > 0.2 
GROUP BY category 
HAVING COUNT(*) > 106 

Page(url,	
  category,	
  pagerank)	
  

CSE 414 - Spring 2013    



…then in Pig-Latin 

43 

good_urls = FILTER urls BY pagerank > 0.2 
groups = GROUP good_urls BY category 
big_groups = FILTER groups  

      BY COUNT(good_urls) > 106 

output = FOREACH big_groups GENERATE 
    category, AVG(good_urls.pagerank) 

Page(url,	
  category,	
  pagerank)	
  

CSE 414 - Spring 2013    



Types in Pig-Latin 

•  Atomic: string or number, e.g. ‘Alice’ or 55 

•  Tuple: (‘Alice’, 55, ‘salesperson’) 

•  Bag: {(‘Alice’, 55, ‘salesperson’), 
           (‘Betty’,44, ‘manager’), …} 

•  Maps: we will try not to use these 

44 CSE 414 - Spring 2013    



Types in Pig-Latin 

Tuple components can be referenced by 
number 

•  $0, $1, $2, … 
 
 
Bags can be nested! Non 1st Normal Form 
•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})} 

45 CSE 414 - Spring 2013    



46 

[Olston’2008]	
  



Loading data 

•  Input data = FILES ! 
– Heard that before ? 

•  The LOAD command parses an input file 
into a bag of records 

•  Both parser  (=“deserializer”) and output 
type are provided by user 

47 

For	
  HW6:	
  simply	
  use	
  the	
  code	
  provided	
  

[Olston’2008]	
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Loading data 

48 

queries = LOAD ‘query_log.txt’ 
         USING myLoad( ) 
             AS (userID, queryString, timeStamp) 

[Olston’2008]	
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Pig provides a set of built-in load/store functions 
A = LOAD 'student' USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);  
same as 
A = LOAD 'student' AS (name: chararray, age:int, gpa: float); 



Loading data 

•  USING userfuction( )  -- is optional 
–  Default deserializer expects tab-delimited file 

•  AS type – is optional 
–  Default is a record with unnamed fields; refer to them 

as $0, $1, … 

•  The return value of LOAD is just a handle to a bag 
–  The actual reading is done in pull mode, or parallelized 

49 

[Olston’2008]	
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FOREACH 

50 

expanded_queries =  
 FOREACH queries 
 GENERATE userId, expandQuery(queryString) 

expandQuery( ) is  a UDF that produces likely expansions 
Note: it returns a bag, hence expanded_queries is a  nested bag 

[Olston’2008]	
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FOREACH 

51 

expanded_queries =  
 FOREACH queries 
 GENERATE userId,  
                     flatten(expandQuery(queryString)) 

Now we get a flat collection 

[Olston’2008]	
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52 

[Olston’2008]	
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FLATTEN 

Note that it is NOT a normal function ! 
(that’s one thing questionable about Pig-latin) 

•  A normal FLATTEN would do this: 
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6} 
–  Its type is: {{T}} à {T} 

•  The Pig Latin FLATTEN does this: 
– FLATTEN({4,5,6}) = 4, 5, 6 
– What is its Type?  {T} à T, T, T, …, T       ????? 

53 

[Olston’2008]	
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FILTER 

54 

real_queries =  FILTER queries BY userId neq ‘bot’ 

Remove all queries from Web bots: 

real_queries =  FILTER queries  
                      BY NOT isBot(userId) 

Better: use a complex UDF to detect Web bots: 

[Olston’2008]	
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JOIN 

55 

join_result = JOIN results BY queryString 
                            revenue BY queryString 

results:       {(queryString, url, position)} 
revenue:     {(queryString, adSlot, amount)} 

join_result : {(queryString, url, position, adSlot, amount)} 

[Olston’2008]	
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[Olston’2008]	
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GROUP BY 

57 

grouped_revenue = GROUP revenue BY queryString 
query_revenues = 
       FOREACH grouped_revenue 
       GENERATE queryString, 
                     SUM(revenue.amount) AS totalRevenue 

revenue:     {(queryString, adSlot, amount)} 

grouped_revenue: {(queryString, {(adSlot, amount)})} 
query_revenues: {(queryString, totalRevenue)} 

[Olston’2008]	
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Simple MapReduce 

58 

map_result = FOREACH input  
                      GENERATE FLATTEN(map(*)) 
key_groups = GROUP map_result BY $0 
output = FOREACH key_groups  

           GENERATE $0, reduce($1) 

input  : {(field1, field2, field3, . . . .)} 

map_result :  {(a1, a2, a3, . . .)} 
key_groups : {(a1, {(a2, a3, . . .)})} 

[Olston’2008]	
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Co-Group 

59 

grouped_data =  
        COGROUP results BY queryString, 
                            revenue BY queryString; 

results: {(queryString, url, position)} 
revenue: {(queryString, adSlot, amount)} 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

What is the output type in general ? 

[Olston’2008]	
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Co-Group 

60 

Is this an inner join, or an outer join ? 

[Olston’2008]	
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Co-Group 

61 

url_revenues = FOREACH grouped_data  
             GENERATE 
                     FLATTEN(distributeRevenue(results, revenue)); 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

distributeRevenue is a UDF that accepts search re- 
sults and revenue information for a query string at a time, 
and outputs a bag of urls and the revenue attributed to them. 

[Olston’2008]	
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Co-Group v.s. Join 

62 

grouped_data = COGROUP results BY queryString, 
                                        revenue BY queryString; 
join_result = FOREACH grouped_data 
                     GENERATE FLATTEN(results),  
                                           FLATTEN(revenue); 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

Result is the same as JOIN 

[Olston’2008]	
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Asking for Output: STORE 

63 

STORE query_revenues INTO `myoutput' 
                  USING myStore(); 

Meaning: write query_revenues to the file ‘myoutput’ 

[Olston’2008]	
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Implementation 

•  Over Hadoop ! 
•  Parse query: 

– Everything between LOAD and STORE à 
one logical plan 

•  Logical plan à graph of MapReduce ops 
•  All statements between two (CO)GROUPs 
à one MapReduce job 

64 

[Olston’2008]	
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Implementation 

65 

[Olston’2008]	
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