
Introduction to Database Systems
CSE 414

Lecture 27: Map Reduce,
slides on Pig Latin

CSE 414 - Spring 2013 1

Announcements
•  Last webquiz due tonight, 11 pm
•  HW8 due on Friday

– Try to make lots of progress over weekend
•  Final exam:

– Mon. 6/10, 2:30-4:20, this room
– Comprehensive
– Same rules as before: open textbook + 1 sheet of

handwritten notes (+ midterm sheet), nothing else
•  Review session:

– Sunday, 6/9, 2 pm, Room TBD

CSE 414 - Spring 2013 2

Outline
•  A clever parallel evaluation algorithm
•  Parallel Data Processing at Massive Scale

– MapReduce
– Reading assignment:

Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

•  Assignment: learn Pig Latin for HW8 from the
lecture notes, example starter code, and the
Web; will discuss (too) briefly in class

CSE 414 - Spring 2013 3

A Challenge

•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

CSE 414 - Spring 2013 4

A Challenge

•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

•  This computes all “triangles”.
•  E.g. let Follows(x,y) be all pairs of Twitter

users s.t. x follows y. Let R=S=T=Follows.
Then Q computes all triples of people that
follow each other.

CSE 414 - Spring 2013 5

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Step 1:

–  Each server sends R(x,y) to server h(y) mod P
–  Each server sends S(y,z) to server h(y) mod P

CSE 414 - Spring 2013 6

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Step 1:

–  Each server sends R(x,y) to server h(y) mod P
–  Each server sends S(y,z) to server h(y) mod P

•  Step 2:
–  Each server computes R⋈S locally
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P
–  Each server sends T(z,x) to h(x) mod P

CSE 414 - Spring 2013 7

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Step 1:

–  Each server sends R(x,y) to server h(y) mod P
–  Each server sends S(y,z) to server h(y) mod P

•  Step 2:
–  Each server computes R⋈S locally
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P
–  Each server sends T(z,x) to h(x) mod P

•  Final output:
–  Each server computes locally and outputs R⋈S⋈T

CSE 414 - Spring 2013 8

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

CSE 414 - Spring 2013 9

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

i

j
k

(i,j,k)

P⅓ 1

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

CSE 414 - Spring 2013 11

i

j

R(x,y)

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

•  Final output:
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

CSE 414 - Spring 2013 12

i

j

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

•  Final output:
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

•  Analysis: each tuple R(x,y) is replicated at most P⅓ times

i

j

Parallel Data Processing
at Massive Scale

CSE 414 - Spring 2013 14

Data Centers Today

•  Data Center: Large number of commodity
servers, connected by high speed,
commodity network

•  Rack: holds a small number of servers

•  Data center: holds many racks

CSE 414 - Spring 2013 15

Data Processing
at Massive Scale

•  Want to process petabytes of data and more

•  Massive parallelism:
–  100s, or 1000s, or 10000s servers
– Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
– Then 10000 servers have one failure / hour

CSE 414 - Spring 2013 16

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks,

typically 64MB
•  Each chunk is replicated several times

(≥3), on different racks, for fault tolerance
•  Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

CSE 414 - Spring 2013 17

MapReduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  MapReduce = high-level programming
model and implementation for large-scale
parallel data processing

18 CSE 414 - Spring 2013

19

Observation: Your favorite parallel algorithm…

Map

(Shuffle)

Reduce

CSE 414 - Spring 2013

Typical Problems Solved by MR

•  Read a lot of data
•  Map: extract something you care about

from each record
•  Shuffle and Sort
•  Reduce: aggregate, summarize, filter,

transform
•  Write the results

CSE 414 - Spring 2013 20

Outline stays the same,
map and reduce change to
fit the problem

slide source: Jeff Dean

Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

21 CSE 414 - Spring 2013

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value)

System applies the map function in parallel
to all (input key, value) pairs in
the input file

22 CSE 414 - Spring 2013

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output (values)

System groups all pairs with the same

intermediate key, and passes the bag of
values to the REDUCE function

23 CSE 414 - Spring 2013

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String	
 key,	
 String	
 value):	

//	
 key:	
 document	
 name	

//	
 value:	
 document	
 contents	

for	
 each	
 word	
 w	
 in	
 value:	

	
 EmitIntermediate(w,	
 “1”);	

reduce(String	
 key,	
 Iterator	
 values):	

//	
 key:	
 a	
 word	

//	
 values:	
 a	
 list	
 of	
 counts	

int	
 result	
 =	
 0;	

for	
 each	
 v	
 in	
 values:	

	
 result	
 +=	
 ParseInt(v);	

Emit(AsString(result));	

MAP REDUCE

(Bob,1)

(the,1)

(Bob,1)

…

(of,1)

(to,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(of, (1,1,1,…,1))

(the, (1,1,…))

(Bob,(1…))

…

…

…

…

(of, 25)

(the, 77)

(Bob, 12)

…

…

…

…

Shuffle

25

Jobs v.s. Tasks

•  A MapReduce Job
– One single “query”, e.g. count the words in all

docs
– More complex queries may consists of multiple

jobs

•  A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 414 - Spring 2013 26

Workers

•  A worker is a process that executes one
task at a time

•  Typically there is one worker per
processor, hence 4 or 8 per node

CSE 414 - Spring 2013 27

MAP Tasks REDUCE Tasks

(Bob,1)

(the,1)

(Bob,1)

…

(of,1)

(to,1)

…

(Bob,1)

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(of, (1,1,1,…,1))

(the, (1,1,…))

(Bob,(1…))

…

…

…

…

(of, 25)

(the, 77)

(Bob, 12)

…

…

…

…

Shuffle

MapReduce Job

MapReduce Execution Details

CSE 414 - Spring 2013 29

Map

(Shuffle)

Reduce

Data	
 not	

necessarily	
 local	

Intermediate	
 data	

goes	
 to	
 local	
 	
 disk	

Output	
 to	
 disk,	

replicated	
 in	
 cluster	

File	
 system:	
 GFS	

or	
 HDFS	

Task

Task

Local	
 storage	
 `	

MR Phases

•  Each Map and Reduce task has multiple phases:

30 CSE 414 - Spring 2013

Example: CloudBurst

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

Map Reduce Sort Shuffle Slot ID

Time

31

Implementation

•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M

map tasks, keeps track of their progress
•  Workers write their output to local disk,

partition into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
32 CSE 414 - Spring 2013

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

33 CSE 414 - Spring 2013

Interesting Implementation Details
Backup tasks:
•  Straggler = a machine that takes unusually

long time to complete one of the last tasks.
Eg:
– Bad disk forces frequent correctable errors

(30MB/s à 1MB/s)
– The cluster scheduler has scheduled other tasks

on that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of

the last few remaining in-progress tasks

34 CSE 414 - Spring 2013

MapReduce Summary

•  Hides scheduling and parallelization
details

•  However, very limited queries
– Difficult to write more complex queries
– Need multiple MapReduce jobs

•  Solution: declarative query language

35 CSE 414 - Spring 2013

Declarative Languages on MR

•  PIG Latin (Yahoo!)
– New language, like Relational Algebra
– Open source

•  HiveQL (Facebook)
– SQL-like language
– Open source

•  SQL / Dremmel / Tenzing (Google)
– SQL on MR
– Proprietary

36 CSE 414 - Spring 2013

Parallel DBMS vs MapReduce

•  Parallel DBMS
–  Relational data model and schema
–  Declarative query language: SQL
–  Many pre-defined operators: relational algebra
–  Can easily combine operators into complex queries
–  Query optimization, indexing, and physical tuning
–  Streams data from one operator to the next without blocking
–  Can do more than just run queries: Data management

•  Updates and transactions, constraints, security, etc.

37 CSE 414 - Spring 2013

Parallel DBMS vs MapReduce

•  MapReduce
–  Data model is a file with key-value pairs!
–  No need to “load data” before processing it
–  Easy to write user-defined operators
–  Can easily add nodes to the cluster (no need to even restart)
–  Uses less memory since processes one key-group at a time
–  Intra-query fault-tolerance thanks to results on disk
–  Intermediate results on disk also facilitate scheduling
–  Handles adverse conditions: e.g., stragglers
–  Arguably more scalable… but also needs more nodes!

38 CSE 414 - Spring 2013

39

Pig Latin Mini-Tutorial

(quick survey in class, but need to
study outside in order to do

homework 8)

CSE 414 - Spring 2013

Pig Latin Overview

•  Data model = loosely typed nested relations
•  Query model = a SQL-like, dataflow language

•  Execution model:
– Option 1: run locally on your machine; e.g. to debug

•  In HW6, debug with option 1 directly on Amazon
– Option 2: compile into graph of MapReduce jobs,

run on a cluster supporting Hadoop

40 CSE 414 - Spring 2013

Example

•  Input: a table of urls:
 (url, category, pagerank)

•  Compute the average pagerank of all
sufficiently high pageranks, for each
category

•  Return the answers only for categories
with sufficiently many such pages

41 CSE 414 - Spring 2013

First in SQL…

42

SELECT category, AVG(pagerank)
FROM Page
WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 106

Page(url,	
 category,	
 pagerank)	

CSE 414 - Spring 2013

…then in Pig-Latin

43

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank)

Page(url,	
 category,	
 pagerank)	

CSE 414 - Spring 2013

Types in Pig-Latin

•  Atomic: string or number, e.g. ‘Alice’ or 55

•  Tuple: (‘Alice’, 55, ‘salesperson’)

•  Bag: {(‘Alice’, 55, ‘salesperson’),
 (‘Betty’,44, ‘manager’), …}

•  Maps: we will try not to use these

44 CSE 414 - Spring 2013

Types in Pig-Latin

Tuple components can be referenced by
number

•  $0, $1, $2, …

Bags can be nested! Non 1st Normal Form
•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

45 CSE 414 - Spring 2013

46

[Olston’2008]	

Loading data

•  Input data = FILES !
– Heard that before ?

•  The LOAD command parses an input file
into a bag of records

•  Both parser (=“deserializer”) and output
type are provided by user

47

For	
 HW6:	
 simply	
 use	
 the	
 code	
 provided	

[Olston’2008]	

CSE 414 - Spring 2013

Loading data

48

queries = LOAD ‘query_log.txt’
 USING myLoad()
 AS (userID, queryString, timeStamp)

[Olston’2008]	

CSE 414 - Spring 2013

Pig provides a set of built-in load/store functions
A = LOAD 'student' USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);
same as
A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

Loading data

•  USING userfuction() -- is optional
–  Default deserializer expects tab-delimited file

•  AS type – is optional
–  Default is a record with unnamed fields; refer to them

as $0, $1, …

•  The return value of LOAD is just a handle to a bag
–  The actual reading is done in pull mode, or parallelized

49

[Olston’2008]	

CSE 414 - Spring 2013

FOREACH

50

expanded_queries =
 FOREACH queries
 GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

[Olston’2008]	

CSE 414 - Spring 2013

FOREACH

51

expanded_queries =
 FOREACH queries
 GENERATE userId,
 flatten(expandQuery(queryString))

Now we get a flat collection

[Olston’2008]	

CSE 414 - Spring 2013

52

[Olston’2008]	

CSE 414 - Spring 2013

FLATTEN

Note that it is NOT a normal function !
(that’s one thing questionable about Pig-latin)

•  A normal FLATTEN would do this:
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
–  Its type is: {{T}} à {T}

•  The Pig Latin FLATTEN does this:
– FLATTEN({4,5,6}) = 4, 5, 6
– What is its Type? {T} à T, T, T, …, T ?????

53

[Olston’2008]	

CSE 414 - Spring 2013

FILTER

54

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries
 BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

[Olston’2008]	

CSE 414 - Spring 2013

JOIN

55

join_result = JOIN results BY queryString
 revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

[Olston’2008]	

CSE 414 - Spring 2013

56

[Olston’2008]	

CSE 414 - Spring 2013

GROUP BY

57

grouped_revenue = GROUP revenue BY queryString
query_revenues =
 FOREACH grouped_revenue
 GENERATE queryString,
 SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

[Olston’2008]	

CSE 414 - Spring 2013

Simple MapReduce

58

map_result = FOREACH input
 GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY $0
output = FOREACH key_groups

 GENERATE $0, reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}

[Olston’2008]	

CSE 414 - Spring 2013

Co-Group

59

grouped_data =
 COGROUP results BY queryString,
 revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

What is the output type in general ?

[Olston’2008]	

CSE 414 - Spring 2013

Co-Group

60

Is this an inner join, or an outer join ?

[Olston’2008]	

CSE 414 - Spring 2013

Co-Group

61

url_revenues = FOREACH grouped_data
 GENERATE
 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

[Olston’2008]	

CSE 414 - Spring 2013

Co-Group v.s. Join

62

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH grouped_data
 GENERATE FLATTEN(results),
 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

Result is the same as JOIN

[Olston’2008]	

CSE 414 - Spring 2013

Asking for Output: STORE

63

STORE query_revenues INTO `myoutput'
 USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

[Olston’2008]	

CSE 414 - Spring 2013

Implementation

•  Over Hadoop !
•  Parse query:

– Everything between LOAD and STORE à
one logical plan

•  Logical plan à graph of MapReduce ops
•  All statements between two (CO)GROUPs
à one MapReduce job

64

[Olston’2008]	

CSE 414 - Spring 2013

Implementation

65

[Olston’2008]	

CSE 414 - Spring 2013

