
Introduction to Database Systems
CSE 414

Lecture 26:
Parallel Database Queries

CSE 414 - Spring 2013 1

HW8

•  MapReduce (Hadoop) w/ declarative language (Pig)
•  Cluster will run in Amazon’s cloud (AWS)

–  Give your credit card (shouldn’t get charged unless runaway)
–  Click, click, click… and you have a MapReduce cluster

•  We will analyze a real 0.5TB graph
•  Processing the entire data takes hours

–  Required problems: queries on a subset only
–  Extra credit problem #4: entire data

•  Tomorrow’s Quiz Sections
–  Step by step instructions on how to connect to AWS
–  Don’t miss!

CSE 414 - Spring 2013 2

Amazon Warning

•  “We HIGHLY recommend you remind students to
turn off any instances after each class/session – as
this can quickly diminish the credits and start
charging the card on file. You are responsible for
the overages.”

•  “AWS customers can now use billing alerts to help
monitor the charges on their AWS bill. You can get
started today by visiting your Account Activity page to
enable monitoring of your charges. Then, you can set
up a billing alert by simply specifying a bill threshold
and an e-mail address to be notified as soon as your
estimated charges reach the threshold.”

CSE 414 - Spring 2013 3

Outline

•  Today: Query Processing in Parallel DBs
•  Then: Parallel Data Processing at Massive

Scale (MapReduce)
–  Reading assignment:

Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 414 - Spring 2013 4

Review

•  Why parallel processing?

•  What are the possible architectures for a
parallel database system?

•  What are speedup and scaleup?

CSE 414 - Spring 2013 5

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

CSE 414 - Spring 2013 6

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

•  Selection: σA=123(R)
–  Scan file R, select records with A=123

•  Group-by: γA,sum(B)(R)
–  Scan file R, insert into a hash table using attr. A as key
–  When a new key is equal to an existing one, add B to the value

•  Join: R ⋈ S
–  Scan file S, insert into a hash table using attr. B as key
–  Scan file R, probe the hash table using attr. B

CSE 414 - Spring 2013 7

Parallel Query Processing

How do we compute these operations on a shared-nothing parallel
db?

•  Selection: σA=123(R) (that’s easy, won’t discuss…)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-
nothing parallel db?

CSE 414 - Spring 2013 8

Horizontal Data Partitioning

CSE 414 - Spring 2013 9

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 414 - Spring 2013 10

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSE 414 - Spring 2013 11

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

•  Block Partition:
–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

12 CSE 414 - Spring 2013

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

•  R is hash-partitioned on A

•  R is block-partitioned

•  R is hash-partitioned on K

13 CSE 414 - Spring 2013

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned on K

14

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSE 414 - Spring 2013

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

15 CSE 414 - Spring 2013

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

16

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE 414 - Spring 2013

Initially, both R and S are horizontally partitioned on K1 and K2

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?

•  If we double both P and the size of R, what is
the new running time?

CSE 414 - Spring 2013 17

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?
–  Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
–  Same (each server holds the same # of chunks)

CSE 414 - Spring 2013 18

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

CSE 414 - Spring 2013 19

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE 414 - Spring 2013 20

Parallel DBMS

•  Parallel query plan: tree of parallel operators
Intra-operator parallelism
–  Data streams from one operator to the next
–  Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
Inter-query parallelism
–  Queries will share the nodes in the cluster

•  Notice that user does not need to know how
his/her SQL query was processed

CSE 414 - Spring 2013 21

22

Loading Data into a Parallel DBMS

AMP = “Access Module Processor” = unit of parallelism
CSE 414 - Spring 2013

Example using Teradata System

23

Example Parallel Query Execution

SELECT *
 FROM Order o, Line i
 WHERE o.item = i.item
 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

CSE 414 - Spring 2013

Order(oid, item, date), Line(item, …)

24

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE 414 - Spring 2013

Order(oid, item, date), Line(item, …)

25

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE 414 - Spring 2013

Order(oid, item, date), Line(item, …)

26

Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE 414 - Spring 2013

Order(oid, item, date), Line(item, …)

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add a special shuffle operator
–  Handle data routing, buffering, and flow control
–  Inserted between consecutive operators in the query plan
–  Two components: ShuffleProducer and ShuffleConsumer
–  Producer pulls data from operator and sends to n consumers

•  Producer acts as driver for operators below it in query plan
–  Consumer buffers input data from n producers and makes it

available to operator through getNext interface

•  Used extensively in database implementation

27 CSE 414 - Spring 2013

