
Introduction to Database Systems
CSE 414

Lecture 21: Views

CSE 414 - Spring 2013 1

Announcements

•  Homework 6 is due Wednesday

•  Today:
–  Views (just enough to know what they are)
–  Start transactions

•  Next: transactions and serializibility

Views

•  A view in SQL =
–  A table computed from other tables, s.t., whenever

the base tables are updated, the view is also
updated

•  More generally:
–  A view is derived data that keeps track of changes

in the original data
•  Compare:

–  A function computes a value from other values,
but does not keep track of changes to the inputs

A Simple View

CSE 414 - Spring 2013 4

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

We Use a View Like Any Table

•  A "high end" store is a store that sell some products
over 1000.

•  For each customer, return all the high end stores that
they visit.

CSE 414 - Spring 2013

SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

5

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Types of Views

•  Virtual views
–  Used in databases
–  Computed only on-demand – slow at runtime
–  Always up to date

•  Materialized views
–  Used in data warehouses
–  Pre-computed offline – fast at runtime
–  May have stale data (must recompute or update)
–  Indexes are materialized views

CSE 414 - Spring 2013 6

Query Modification

CSE 414 - Spring 2013 7

For each customer, find all the high end stores that they visit.

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

Query Modification

CSE 414 - Spring 2013 8

For each customer, find all the high end stores that they visit.

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

SELECT DISTINCT u.customer, u.store
FROM Purchase u,
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE u.store = v.store
 AND v.price > 1000

Modified query:

Query Modification

CSE 414 - Spring 2013 9

For each customer, find all the high end stores that they visit.

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT u.customer, u.store
FROM Purchase u,
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE u.store = v.store
 AND v.price > 1000

Modified query:

SELECT DISTINCT u.customer, u.store
FROM Purchase u, Purchase x, Product y
WHERE u.store = x.store
 AND y.price > 1000
 AND x.product = y.pname

Modified and unnested query:

Notice that
Purchase
occurs twice.
Why?

Further Virtual View Optimization

CSE 414 - Spring 2013 10

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT v.store
FROM StorePrice v
WHERE v.store like ‘%ACME%’

Further Virtual View Optimization

CSE 414 - Spring 2013 11

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT v.store
FROM StorePrice v
WHERE v.store like ‘%ACME%’

SELECT DISTINCT v.store
FROM
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE v.store like ‘%ACME%’

Modified query:

Further Virtual View Optimization

CSE 414 - Spring 2013 12

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT v.store
FROM
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE v.store like ‘%ACME%’

Modified query:
Modified and unnested query:

We can further optimize! How? SELECT DISTINCT x.store
FROM Purchase x, Product y
WHERE x.product = y.pname
 AND x.store like ‘%ACME%’

Further Virtual View Optimization

CSE 414 - Spring 2013 13

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT x.store
FROM Purchase x
WHERE x.store like ‘%ACME%’

Final Query Modified and unnested query:

Assuming Product.pname is a key
and Purchase.product is a foreign key SELECT DISTINCT x.store

FROM Purchase x, Product y
WHERE x.product = y.pname
 AND x.store like ‘%ACME%’

Applications of Virtual Views

•  Increased physical data independence. E.g.
–  Vertical data partitioning
–  Horizontal data partitioning

•  Logical data independence. E.g.
–  Change schemas of base relations (i.e., stored tables)

•  Security
–  View reveals only what the users are allowed to know

CSE 414 - Spring 2013 14

Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
432432 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
 . . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN 15

Vertical Partitioning

CSE 414 - Spring 2013 16

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

Vertical Partitioning
CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

CSE 414 - Spring 2013 17

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Vertical Partitioning
CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’
 AND T1.SSN=T2.SSN
 AND T1.SSN = T3.SSN

Modified query:

Vertical Partitioning
CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’
 AND T1.SSN=T2.SSN
 AND T1.SSN = T3.SSN

Modified query:

SELECT T1.address
FROM T1
WHERE T1.name = ‘Sue’

Final query:

Vertical Partitioning Applications

1.  Advantages
–  Speeds up queries that touch only a small fraction of columns
–  Single column can be compressed effectively, reducing disk I/O

2.  Disadvantages
–  Updates are expensive!
–  Need many joins to access many columns
–  Repeated key columns add overhead

20

Hot trend today for data analytics: e.g., Vertica startup acquired by HP
They use a highly-tuned column-oriented data store AND engine

Horizontal Partitioning

SSN Name City
234234 Mary Houston
345345 Sue Seattle
345343 Joan Seattle
234234 Ann Portland
-- Frank Calgary
-- Jean Montreal

Customers

SSN Name City
234234 Mary Houston

CustomersInHouston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

.

CSE 414 - Spring 2013 21

Horizontal Partitioning

CREATE VIEW Customers AS
 CustomersInHouston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

CSE 414 - Spring 2013 22

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CSE 414 - Spring 2013 23

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CSE 414 - Spring 2013 24

All tables!
The systems doesn’t know that CustomersInSeattle.city = ‘Seattle’

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning
Better: remove CustomerInHuston.city etc

CSE 414 - Spring 2013 25

CREATE VIEW Customers AS
 (SELECT SSN, name, ‘Houston’ as city
 FROM CustomersInHouston)
 UNION ALL
 (SELECT SSN, name, ‘Seattle’ as city
 FROM CustomersInSeattle)
 UNION ALL
 . . .

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

CSE 414 - Spring 2013 26

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning Applications

•  Performance optimization
–  Especially for data warehousing
–  E.g. one partition per month
–  E.g. archived applications and active applications

•  Distributed and parallel databases

•  Data integration

CSE 414 - Spring 2013 27

