
Introduction to Database Systems
CSE 414

Lecture 8: Nested Queries in SQL

CSE 414 - Spring 2013 1

Announcements

•  Homework 2 due tonight

•  Webquiz 3 due Friday – 2 questions on
nested queries (i.e., today’s stuff)

•  Homework 1 solution on the web now

•  Homework 3 …

CSE 414 - Spring 2013 2

Homework 3

•  More IMDB queries using SQL Azure
•  Login details in the assignment (out today)

–  Userid = your UW netid; password on whiteboard
–  Change password on first login

•  Demo in sections tomorrow
•  Software (tested on these)

–  SQL Server 2008 R2 or later (free to cse414 students)
–  SQL Server 2012 Express (free download)
–  Web browser (uses silverlight)

•  SQL server 20xx downloads are huge (~1GB) and
can take an hour to install
–  Only need SQL Server Management Studio part (still huge)

CSE 414 - Spring 2013 3

Lecture Goals

•  Today we will learn how to write more
powerful SQL queries

•  They are needed in Homework 3

•  Reading: Ch. 6.3

CSE 414 - Spring 2013 4

Subqueries

•  A subquery is a SQL query nested inside a larger query
•  Such inner-outer queries are called nested queries
•  A subquery may occur in:

–  A SELECT clause
–  A FROM clause
–  A WHERE clause

•  Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

CSE 414 - Spring 2013 5

Subqueries…

•  Can return a single constant and this constant
can be compared with another value in a
WHERE clause

•  Can return relations that can be used in various
ways in WHERE clauses

•  Can appear in FROM clauses, followed by a
tuple variable that represents the tuples in the
result of the subquery

•  Can appear as computed values in a SELECT
clause

CSE 414 - Spring 2013 6

7

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cid=X.cid) as City
FROM Product X

What happens if the subquery returns more than one city ?

CSE 414 - Spring 2013

We get a runtime error
(SQLite simply ignores the extra values)

“correlated
subquery”

1. Subqueries in SELECT
Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=
We have

“unnested”
the query

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cid=X.cid) as City
FROM Product X

8

Product (pname, price, cid)
Company(cid, cname, city)

9

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
 FROM Product P
 WHERE P.cid=C.cid)
FROM Company C

Better: we can
unnest by using
a GROUP BY

CSE 414 - Spring 2013

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

10

1. Subqueries in SELECT
But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)
 FROM Product P
 WHERE P.cid=C.cid)
FROM Company C

No! Different results if a
company has no products

CSE 414 - Spring 2013

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company(cid, cname, city)

11

2. Subqueries in FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

Unnest this query !

CSE 414 - Spring 2013

Product (pname, price, cid)
Company(cid, cname, city)

2. Subqueries in FROM

•  Later we will see that sometimes we really
need a subquery and one option will be to put
it in the FROM clause (see “finding
witnesses”)

CSE 414 - Spring 2013 12

13

3. Subqueries in WHERE

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

CSE 414 - Spring 2013

Product (pname, price, cid)
Company(cid, cname, city)

14

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price < 200)

Using IN

CSE 414 - Spring 2013

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

15

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Using ANY:

CSE 414 - Spring 2013

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

16

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

17

3. Subqueries in WHERE

Universal quantifiers are hard ! L

same as:

CSE 414 - Spring 2013

Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

18

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

19

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
 FROM Product P
 WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

CSE 414 - Spring 2013

Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

20

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ALL (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Using ALL:

CSE 414 - Spring 2013

Universal quantifiers

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies s.t. all their products have price < 200

21

Question for Database Fans
and their Friends

•  Can we unnest the universal quantifier query ?

CSE 414 - Spring 2013

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

iPad 499.99 c001

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

A B

149.99 Lyon

19.99 Lyon

19.99 Bonn

149.99 Bonn

Is the mystery
query monotone?

Product Company

Q

Q

Monotone Queries
•  Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

•  Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - Spring 2013 23

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 output (a1,…,ak)

Monotone Queries
•  The query:

is not monotone

•  Consequence: we cannot write it as a SELECT-
FROM-WHERE query without nested subqueries 24

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company(cid, cname, city)

25

Queries that must be nested

•  Queries with universal quantifiers or with
negation

•  The drinkers-bars-beers example next time
–  This is a famous example from textbook on

databases by Ullman

CSE 414 - Spring 2013

26

Practice these queries in SQL

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

x: ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

x: ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

x: ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Ullman’s drinkers-bars-beers example

Find drinkers that frequent some bar that serves only beers they like.

x: ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

