
Introduction to Database Systems
CSE 414

Lectures 4 and 5: Aggregates in SQL

CSE 414 - Spring 2013 1

Announcements

•  Homework 1 is due on Wednesday
•  Quiz 2 will be out today and due on Friday

CSE 414 - Spring 2013 2

Outline

•  Outer joins (6.3.8)
•  Aggregations (6.4.3 – 6.4.6)
•  Examples, examples, examples…

CSE 414 - Spring 2013 3

Outerjoins

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON
 Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But some Products are not listed! Why?

Product(name, category)
Purchase(prodName, store) -- prodName is foreign key

An “inner join”:

4

Outerjoins

 SELECT Product.name, Purchase.store
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName

If we want to include products that never sold,
then we need an “outerjoin”:

CSE 414 - Spring 2013 5

Product(name, category)
Purchase(prodName, store) -- prodName is foreign key

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

6

Outer Joins

•  Left outer join:
–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include both left and right tuples even if there’s no

match

CSE 414 - Spring 2013 7

Aggregation in SQL

CSE 414 - Spring 2013 8

Other	 DBMSs	 have	
other	 ways	 of	
impor5ng	 data	

Specify	 a	 filename	
where	 the	 database	

will	 be	 stored	
>sqlite3 lecture04!
!
sqlite> create table Purchase!

! (pid int primary key,!
! product text,!
! price float,!
! quantity int,!
! month varchar(15));!

!
sqlite> -- download data.txt!
sqlite> .import data.txt Purchase!

Comment about SQLite

•  One cannot load NULL values such that they
are actually loaded as null values

•  So we need to use two steps:
–  Load null values using some type of special value
–  Update the special values to actual null values

CSE 414 - Spring 2013 9

update Purchase  
 set price = null  
 where price = ‘null’ !

Simple Aggregations

Five basic aggregate operations in SQL

CSE 414 - Spring 2013

Except count, all aggregations apply to a single attribute
10

select count(*) from Purchase!
select sum(quantity) from Purchase!
select avg(price) from Purchase!
select max(quantity) from Purchase!
select min(quantity) from Purchase!

Aggregates and NULL Values

11

insert into Purchase  
values(12, 'gadget', NULL, NULL, 'april')!

select count(*) from Purchase!
select count(quantity) from Purchase!
!
select sum(quantity) from Purchase!
!
select sum(quantity)  
from Purchase  
where quantity is not null;!

Null values are not used in aggregates

Let’s try the following

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(product)
FROM Purchase
WHERE price > 4.99

same as Count(*)

We probably want:

SELECT Count(DISTINCT product)
FROM Purchase
WHERE price> 4.99

Counting Duplicates

CSE 414 - Spring 2013 12

More Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

CSE 414 - Spring 2013 13

Simple Aggregations
Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘Bagel’

90 (= 60+30)

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

CSE 414 - Spring 2013
14

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

CSE 414 - Spring 2013 15

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
 grouped attributes and aggregates.

CSE 414 - Spring 2013 16

1&2. FROM-WHERE-GROUPBY

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

CSE 414 - Spring 2013 17

WHERE	 price	 >	 1	

3. SELECT

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

18

Other Examples

SELECT product,
 sum(quantity) AS SumQuantity,
 max(price) AS MaxPrice
FROM Purchase
GROUP BY product

What does
it mean ?

CSE 414 - Spring 2013

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

19

Need to be Careful…
SELECT product, max(quantity)
FROM Purchase
GROUP BY product

SELECT product, quantity
FROM Purchase
GROUP BY product

sqlite	 is	 WRONG	 on	
this	 query.	 	 Advanced	 DBMS	 (e.g.	 SQL	

Server)	 gives	 an	 error	

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

20 CSE 414 - Spring 2013

Ordering Results

CSE 414 - Spring 2013

SELECT product, sum(price*quantity) as rev
FROM purchase
GROUP BY product
ORDER BY rev desc

21

HAVING Clause

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

CSE 414 - Spring 2013 22

WHERE vs HAVING

•  WHERE condition is applied to individual rows
–  The rows may or may not contribute to the aggregate
–  No aggregates allowed here

•  HAVING condition is applied to the entire group
–  Entire group is returned, or not al all
–  May use aggregate functions in the group

CSE 414 - Spring 2013 23

Aggregates and Joins

CSE 414 - Spring 2013 24

create table Product  
 (pid int primary key,  
 pname varchar(15),  
 manufacturer varchar(15));!
!
insert into product values(1,'bagel’,'Sunshine Co.');!
insert into product values(2,'banana’,'BusyHands');!
insert into product values(3,'gizmo’,'GizmoWorks');!
insert into product values(4,'gadget’,'BusyHands');!
insert into product values(5,'powerGizmo’,'PowerWorks');!

Aggregate + Join Example

CSE 414 - Spring 2013

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

What do these
query mean?

SELECT x.manufacturer, y.month, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer, y.month

25

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

 and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE 414 - Spring 2013 26

Semantics of SQL With Group-By

Evaluation steps:
1.  Evaluate FROM-WHERE using Nested Loop Semantics
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE 414 - Spring 2013
27

Empty Groups

•  In the result of a group by query, there is one
row per group in the result

•  No group can be empty!
•  In particular, count(*) is never 0

CSE 414 - Spring 2013

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

What if there
are no

purchases for a
manufacturer

28

Empty Groups: Example

CSE 414 - Spring 2013

SELECT product, count(*)
FROM purchase
GROUP BY product

SELECT product, count(*)
FROM purchase
WHERE price > 2.0
GROUP BY product

5 groups in our
example dataset

3 groups in our
example dataset

29

Empty Group Problem

CSE 414 - Spring 2013

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

What if there
are no

purchases for a
manufacturer

30

Empty Group Solution:
Outer Join

CSE 414 - Spring 2013

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

31

