
1

5/5/99 1

CSE 413 Spring 1999

Java Streams

5/5/99 2

Streams
• Stream = flow of data (bytes or characters)
• Can be associated with files, communication links,

keyboard/screen/printer
• Many stream classes; most are designed to be used

as wrappers that accept data and transform or filter
it before passing it along

• Java 1.0: Byte streams with a few wrappers to
handle ASCII text

• Java 1.1: Added text stream classes to handle
Unicode text properly

5/5/99 3

Stream Classes (1)
• InputStream/OutputStream - abstract

classes defining basic raw byte stream operations
• Reader/Writer - abstract classes defining

basic text stream operations
All Java stream classes are built on top of these

• InputStreamReader/OutputStreamWriter -
basic conversion between bytes and characters (in
both directions)

5/5/99 4

Stream Classes (2)
• BufferedInputStream/
BufferedOutputStream
BufferedReader/BufferedWriter -
versions of streams that add buffering and
additional input/output methods

• PrintWriter - Text stream with methods for
printing Strings and primitive types as text
output.

5/5/99 5

Stream Classes (3)
• DataInputStream/DataOutputStream -

Filter streams that can read/write simple types
including String and primitive numeric types as
binary byte streams.

• FileInputStream/FileOutputStream
FileReader/FileWriter - byte and text
streams that read and write from/to the local file
system.

5/5/99 6

Ex: Read a byte from Keyboard
• System.in is an InputStream. At the

lowest level, we can read bytes. As in C, the basic
read() operation returns an int, with -1
indicating end of stream.

try {
int nibble = System.in.read();

} catch (IOException e) { … }

2

5/5/99 7

Ex: Read Line from Keyboard
• To read lines of characters, convert System.in

to a character stream, and wrap it in a
BufferedReader to get readLine().

try {
InputStreamReader chars =
 new InputStreamReader(System.in);
BufferedReader in =
 new BufferedReader(chars);
String firstLine = in.readLine();
…

} catch (IOException e) { … }

5/5/99 8

Formatted I/O
• java.txt has many classes for formatting

output and parsing input (new in Java 1.1).

NumberFormat nf =
NumberFormat.getInstance();

for (double x = Math.PI;
x < 100000; x = x*10) {

String ns = nf.format(x);
System.out.println(ns +

’\t’ + x);
}

5/5/99 9

Output
3.141 3.14159265358979
31.415 31.4159265358979
314.159 314.159265358979
3,141.592 3141.59265358979
31,415.926 31415.9265358979
...

• Almost any formatting option you might want is
available, and formatting is sensitive to the current
language (locale) being used.

5/5/99 10

File I/O
• The file stream classes have constructors that take

a filename as an argument and open the file.
Try {
FileReader theFile =

new FileReader(“input.dat”);
BufferedReader input =

new BufferedReader(theFile);
String line = input.readLine();
System.out.println(line);

} catch (IOException e) { … }
• Gotcha: File names depend on the underlying file system --

hard to be completely “platform independent”.

5/5/99 11

Selecting Files
• Class FileDialog lets the user select the file with a

dialog box
Try {
 FileDialog fd=new FileDialog(this,

“Pick File”,FileDialog.LOAD);
fd.show();
fileName = fd.getfile();
if (filename != null) {
 // use fileName to open the file

…
}

} catch (IOException e) { … }

