
CSE 413 Sp99 Java Notes, page 1

CSE 413 Java Overview
April, 1999

A Few References:

CSE413 text —Understanding Object-Oriented
Programming with Javaby Tim Budd, Addison-
Wesley, 1998.

Good quick overview for experienced programmers —
Java in a Nutshell, O'Reilly & Associates. First
edition covers Java 1.0; second edition covers Java
1.1 and deletes some of the Java 1.0 examples.

Sun's Java web site at www.java.sun.com — includes
online Java class library web reference pages.

Reference information —The Java Language
Specificationby Gosling, Joy, and Steele,The Java
Class Librariesby Chan and Lee,The Java
Programming Languageby Arnold and Gosling,…
.

CSE 413 Sp99 Java Notes, page 2

Some History

• 1973 C (Ritchie)

• 1978 C Programming Language, 1st ed. (K&R)

• C with Classes (Stroustrup)

• 1983 C++ (Stroustrup)

• 1985 C++ Programming Language, 1st ed.

• 1988 C Programming Language, 2nd ed.

• 1990 C standard adopted

• 1991 C++ Programming Language, 2nd ed.

• 1993 Oak project at Sun

• 1995 Java announced

• 1996 Java available

• 1997 (March) Java 1.1

• 1997 C++ Programming Language, 3rd ed.

• 1997 (September) Java 1.2 beta

• 1998 (July) C++ Standard adopted

• 1998 (October) Java 1.2 finalJava 2

• ???? Java Standardized? Pure Java? MS Java?

CSE 413 Sp99 Java Notes, page 3

Java

Java originated in the Oak project at Sun to support
software for consumer electronics gadgets. C++ was
used at first, but that turned out to be unwieldy. So they
invented a new language, Java, based on good ideas
from languages like C++, Eiffel, Smalltalk, Objective
C, and Cedar/Mesa.

Java's design goals include:

• Support secure, high performance, robust applications
that run as-is on many platforms and over networks.

• "Architecture-neutral", portable, support for dynamic
updates and adaptation to new environments.

• Culturally familiar so the C++ world will buy into it.

• Support for object-oriented programming.

• Support for concurrent, multithreaded applications.

• Simple (particularly compared to C++).

CSE 413 Sp99 Java Notes, page 4

"Hello World" in Java

class HelloWorld
{

static public void main(String args[])
{

System.out.println("Hello World");
}

}

CSE 413 Sp99 Java Notes, page 5

Basic Data Types

• int — 32-bit integers, ± 2,147,483,647: -17, 42
• double — 64-bit IEEE floating point: 3.14, 1.0e-6
• char — 16-bit Unicode: ‘a’, ‘?’, ‘¥ ‘, ‘é ‘, ‘ÿ ‘
• boolean — truth values:true , false

Notes:

• boolean andint values are not interchangeable.

• There are additional signed numeric types:
— integer types:byte (8 bits),short (16), long

(64)

— floating point type:float (32 bits)

• An integer constant normally has typeint ; a
floating-point constant normally has typedouble .
byte and short values are widened toint before
arithmetic operations are performed.

• Nothing in Java is "implementation-defined" or
"implementation-dependent".

CSE 413 Sp99 Java Notes, page 6

Variables, Arithmetic Expressions, and Assignment

Almost the same as in C/C++

int k = 17;
double x, y, z;
boolean maybe = true;
char ch;

Initialization is optional; if omitted, all class variables
are initialized to binary0 (false , null). Local
variables in methods and constructors are not
initialized.

k = k/2; // truncates
x = 3.5*k+42.0;
y = x/2; // no truncation

Assignment quietly coerces types as long as no
information is lost:

y = (k+6)*11/2;

Explicit coercion is required to, for example, truncate a
floating-point value to integer.

k = (int) x * 0.5;

CSE 413 Sp99 Java Notes, page 7

Conditional Statements

Java'sif statement is the same as in C/C++. Braces
({}) are used to create compound statements.

if (x < y)
x = y;

if (x > y) {
int tmp = x;
x = y;
y = x;

}

if (x != y) {
x = y;

} else {
y = 0;

}

CSE 413 Sp99 Java Notes, page 8

switch

Theswitch statement also works just like it does in
C/C++ (unfortunately). An explicitbreak is needed
after each case; if it is omitted, execution falls through
to the next one. Ifdefault is not provided and the
expression does not match any case label, execution
proceeds with the next statement.

switch (k/2) }
case 0:

<do something>
break;

case 1:
<do something else>
break;

default:
<do something different>

}

CSE 413 Sp99 Java Notes, page 9

Indefinite Iteration — while

The fundamental iteration construct iswhile .

while (k < 100)
k = 2*k;

while (k < n && a[k] != x) {
sum = sum + a[k];
k++;

}

Notes:

• Logical and (&&) and or (||) are short-circuit — the
second operand is not evaluated if not needed.

• Watch for use of bitwise& and| . These typos are
legal Java but probably don't do what you want.

CSE 413 Sp99 Java Notes, page 10

Definite Iteration — for

Thefor statement works as in C/C++.

for (initialize; test; increment)
statement;

is equivalent to

initialize;
while (test) {

statement;
increment;

}

(except new variables can be declared ininitialize.)

CSE 413 Sp99 Java Notes, page 11

Functions Methods

"Java has no functions. Object-oriented programming
supersedes functional and procedural styles. Mixing
the two styles just leads to confusion and dilutes the
purity of an object-oriented language. Anything you
can do with a function you can do just as well by
defining a class and creating methods for that class."

The Java Language Environment:
A White Paper

James Gosling and Henry McGilton

There are no free-standing, global functions or variables
in Java. Everything is a member of some class.

CSE 413 Sp99 Java Notes, page 12

Classes & Objects

The basic use of a class is to define a template for
objects (instances) of that class. Objects are used both
for "object-oriented" programming and for data
aggregates likestruct in C/C++ or record in Pascal.

// a very simple class
class Blob {

private int val; // Blob's value

// yield the current value of this Blob
public int getVal() {

return val;
}

// set the current value of this Blob to n
public void setVal(int n) {

val = n;
}

// Yield string representation of this Blob
public String toString() {

return "Blob: va l = " + val;
}

}

Access to a member is restricted to other members of
the class if it is qualified withprivate . If public is
used, it may be accessed from anywhere.

ClassBlob should normally be in fileBlob.java .

CSE 413 Sp99 Java Notes, page 13

Creating Objects, Calling Methods

Objects are allocated bynew and fields are referenced
with the usual dot notation.

Blob b;
b = new Blob();
int k = b.getVal(); / / k = ____?
b.setVal(17);
Blob x = new Blob();
x.setVal(b.getval () + 25);

All parameters are passed by value (either a primitive
value or a reference to an object allocated bynew.)

CSE 413 Sp99 Java Notes, page 14

Notes:

• The declaration

Blob b;

only declares thatb has type "reference toBlob ". It
does not actually allocate a newBlob . The
declaration and allocation are often combined.

Blob b = new Blob();

• The valuenull can be used anywhere a reference is
needed; it points to no object. If an attempt is made
to select a field fromnull , a
NullPointerException is thrown.

• Storage allocated bynew is automatically reclaimed
when the object is no longer accessible (automatic
garbage collection). For large objects, it's sometimes
a good idea to overwrite any references to them when
they are no longer needed to allow the storage to be
reclaimed.

b = null;

CSE 413 Sp99 Java Notes, page 15

Constructors

If nothing special is done, all of the data members of a
newly allocated object are given default initial values
(lots of 0's). Constructors can be included in a class to
specify code to be executed when an object is created.
Constructors, like other functions, can be overloaded,
i.e., several definitions can be given differing in number
and/or types of parameters. The actual parameter list is
used to determine which one to call.

class Blob {
int val; // Blob value

// constructors
Blob() { val = 42; }

Blob(int initialVal) {
val = initialVal;

}
...

}

Blob b = new Blob(); // b.val = ____ ?

Blob c = new Blob(17); // c.val = ____ ?

CSE 413 Sp99 Java Notes, page 16

static Methods

Conceptually, every object has a copy of each method
declared in a class. But there are some methods
(functions) that aren't naturally associated with objects
— the most obvious ones are the basic math functions
(sin , cos , sqrt , …).

Such methods still must be declared in a class, but they
are declaredstatic to indicate that there is only one
copy of the method and it is associated with the class.
For example, the basic math functions are static
members of classMath .

class Math { // part of java.lang
static double sqrt(double x) { ... }
static double sin (double x) { ... }

...
}

...

d = Math.sqrt(x*x + y*y);

CSE 413 Sp99 Java Notes, page 17

"Hello World" Revisited

class HelloWorld {
static public void main(String args[]) {

System.out.println("Hello World");
}

}

Execution of a program always begins in methodmain
of some class. It must bestatic and publicly visible.

The standard classSystem provides basic I/O and
other services.System.out.println writes its
string argument to the console.

Note: In Java, every class may have a methodmain .
Among other things, this provides a useful place to
keep test programs for individual classes.

Implementation note: You may need to set some
preferences or options to specify which class'smain
method should be used to begin execution.

CSE 413 Sp99 Java Notes, page 18

static Fields

Normally, every object of a class has its own copy of
each field declared in the class. Sometimes, however,
we only want a single copy of a variable to be shared
among all instances of a class. This is also specified by
static .

Example: Blob s with sequential serial numbers.

Class Blob {
int val; // value of this blob
int serial; // serial number of this blob

static int nextSerial = 0; // next serial #

// constructor
Blob () {

val = 17;
serial = nextSerial;
nextSerial++;

}
...

}

CSE 413 Sp99 Java Notes, page 19

Static data member example, cont.

Blob b = new Blob();

Blob ob = new Blob();

b.setVal(17);

ob.setVal(b.getVal()++);

CSE 413 Sp99 Java Notes, page 20

Symbolic Constants

A class variable (but not a local variable in Java 1.0)
may be qualified with the keywordfinal , meaning
that the variable must be initialized when declared and
can't be changed later. If afinal variable is not
static , then every object of the class has a separate
copy, possibly with different values. Astatic
final variable is a symbolic constant associated with
the class.

Example: Symbolic constants provided in standard
classMath .

class Math {
static final double PI = 3.14159265359;
static final double E = 2.71828182845;
...

}
...

double a = Math.P I * r * r;

CSE 413 Sp99 Java Notes, page 21

Arrays

Arrays, like everything in Java that isn't a primitive data
type (int , double , char , etc.), are dynamically
allocated withnew. Unlike most other languages,
declaring an array in Java doesn't actually create it.

double[] a;
a = new double[6];
for (int k = 0; k < 6; k++)

a[k] = k;

Notes:

• Arrays are 0-origin, as in C/C++.

• If a is an array, a.length is the number of
elements in it.

• An IndexOutOfBoundsException is thrown if
a subscript is out of range.

• The array brackets can be placed after the variable, as
in C/C++ (but why would anyone want to?).

int a[] = new int[30];
CSE 413 Sp99 Java Notes, page 22

2-D Arrays

A 2-dimensional array is really an array of references to
array rows. The allocation

double[][] matrix = new double[10][20];

is shorthand for

double[][] matrix = new double[10][];
for (int k = 0; k < 10; k++)

matrix[k] = new double[20];

Array elements are accessed in the usual way.

for (int r = 0; r < 10; r++)
for (int c = 0; c < 20; c++)

matrix[r][c] = r*c;

CSE 413 Sp99 Java Notes, page 23

Arrays of Objects

If the elements of the array are not primitive types, they
must be allocated individually.

class Point { // point on cartesian plane
public double x;
public double y;

}
...

// declare Point array
Point[] pList;

// allocate Point array
pList = new Point[4];

// allocate array Points
for (int k=0; k<4; k++)

pList[k] = new Point();

CSE 413 Sp99 Java Notes, page 24

Strings

ClassString describes read-only string objects; the
StringBuffer class provides string objects that can
be modified (are "mutable").

Strin g s = "String Constants are written ";
Strin g t = "with the usual notation.\ n"
System.out.println(s + t +

"The + operator indicates string " +
"concatenation.\ n");

Notes:

• A String is an object — it is not the same as an
array of characters. There's no'\0' byte at the end.

• String elements are Unicode characters.

• If s is a String,s.length() is its length and
s.charAt(k) is thechar in positionk . Class
String contains many useful string-processing
functions.

• Most classes include atoString() method that is
executed automatically when an object is used in a
context where a string is expected.

CSE 413 Sp99 Java Notes, page 25

Derived Classes

Java supports single inheritance to derive new classes
from one parent class. A derived class is said to extend
its superclass. Example:

// Point in 3-D space
class Point3D extends Point {

public double z; // z coordinate
}

ClassObject is at the root of the inheritance
hierarchy. Any class that does not explicitly extend
another class implicitly extendsObject . These are
equivalent:

class Point { ... }
class Point extends Object { ...}

All of the usual object-oriented notions are supported,
includingthis andsuper to refer to members of the
current class and superclass, abstract classes, protected
access to parent class members, etc.

CSE 413 Sp99 Java Notes, page 26

Wrapper Classes for Basic Types

Everything in Java extendsObject except for the
basic numeric, character, and boolean types. For
situations where one needs to use data of these types
when anObject is required, Java provides wrapper
classesInteger , Double , Boolean , Char , etc.

Integer(17) is an object representation of theint
17. If I is anInteger , I.intValue() is its int
value. The other wrapper classes work similarly.

These classes are also used as a convenient place to
stash useful static utility functions and constants.
Examples:

Integer.MAX_VALUE // largest int
Double.MIN_VALUE // smallest double > 0
Character.isLowerCase(ch) //== ch is lowercase
Double(“ 123.45 ”) // double value of string

CSE 413 Sp99 Java Notes, page 27

Interfaces

Restricting Java to single inheritance simplifies the
language, but rules out some sensible designs. For
example, a random access file should be usable as both
an input file and an output file, i.e., it should be derived
from both classes. Java interfaces provide most of the
necessary features.

An interface is a specification of constants and abstract
methods. It contains no code and no objects can be
created from it. It can extend other interfaces.

A class may implement as many interfaces as desired.
The full implementation must be provided — no code is
"inherited" from an interface.

interface DataInput { ... } // stream input
interface DataOutput { ... } // stream output

class DataInputStream
extends FilterInputStream
implements DataInput { ... }

class RamdomAccessFile extends Object
implements DataInput, DataOutput { ... }

CSE 413 Sp99 Java Notes, page 28

Packages

Java provides packages to group related classes and
interfaces and to avoid name clashes between packages
developed independently. To incorporate a source file
in, for example, packagewidget , the first non-
comment line in the file must be

package widget;

Items in a package normally have access to classes and
methods in all files that are part of the package. Files in
other packages must import it. There are several forms;
the basic one imports all visible names in the package.

import widget.*;

This should be placed after anypackage declaration
and before anything else.

Files with no package declaration are grouped in an
"unnamed package". For most of your projects, it's
probably easiest to omit package declarations.

CSE 413 Sp99 Java Notes, page 29

Standard Libraries

Java includes a largehuge class library grouped into
many packages. Some of the basic ones are listed
below. Everything injava.lang is imported
automatically (including things likeMath , the
Integer -like wrapper classes, etc). Animport
declaration is needed to use routines in other packages.
• java.lang — standard system types and classes.
• java.io — streams and random access files.
• java.net — TCP/IP sockets, telnet, URLs.
• java.util — basic container and utility classes:

dictionaries, hash tables, Date, Time, …
• java.awt — Abstract Windowing Toolkit. Version

1.0 lasted less than a year. Version 1.1 has a much-
improved event-handling model, and is supported by
current (Sp99) web browsers. Java 1.2Java 2
includes a new user interface toolkit, Swing, that is
independent of the underlying OS GUI, but is not
widely available yet.

CSE 413 Sp99 Java Notes, page 30

Comparing and Copying Objects

For objects, the equality operators== and!= determine
whether two references point to the same object. Ifb
andc are bothBlob s, thenb == c is true iff b andc
both refer to the sameBlob . Similarly, assignment
(=), only copies references. Example:

Blob b = new Blob(17);
Blob c = new Blob(42);

if (b == c)
System.err.println("Something's broken");

else
System.err.println("no problem");

c = b;
b.setVal(100);
System.out.println(" b = " + b.getVal() +

"c = " + c.getVal());

CSE 413 Sp99 Java Notes, page 31

Deep Copy/Compare

ClassObject (and therefore every class) includes two
methods that are intended do a deep copy or
comparison. Normally (assuming that this makes sense
for a class), a class author would include
implementations forequals andclone so that

a.equals(b) is true iff a andb have the "same
value".

b.clone() creates a new "copy" ofb and returns a
reference to the new copy.

Technicality: Any class can defineequals with no
further formalities. In Java 1.0, to override (implement)
clone , the class had to explicitly implement the
Cloneable interface.

class ClonableBlob extends Blob
implements Cloneable {

... definitions of clone and equals
}

All array "objects" areCloneable by default.
[To check: Is this still needed in Java 1.1, 1.2?]

CSE 413 Sp99 Java Notes, page 32

Exceptions

Java has an extensive (and somewhat intrusive)
exception mechanism. The basic idea is to surround a
section of code with an exception handler.

try {
thisMightExplode(x,y);

} catch (Exception e) {
<deal with problem>

}

If something goes wrong during execution of method
thisMightExplode (or any method that it calls) the
method detecting the error will execute

throw new someExceptionClass(parameters);

to create an exception object (of a class derived from
Exception) and unwind the call chain until some
routine catches the exception or terminates the program.

A method that calls a method that might throw an
exception must either contain catch blocks for any
exceptions that might be thrown, or include a
"throws " clause in its heading to show that it might
propagate the exception.

CSE 413 Sp99 Java Notes, page 33

Output

There is an extensive stream library injava.io . It
provides fairly reasonable support for simple text
output.

System.out andSystem.err are the standard
output and error output stream objects. These normally
write to a console window. The basic methods are:

System.out.print(...); // print as text
System.out.flush(); // flush buffered data
System.out.println(...); // print as text +

// newline & flush

These methods are overloaded for all of the basic types.

System.out.print(k);
System.out.println(" is a number");

But since most classes includetoString() to
produce a string representation when needed, usually
several things can be written at once.

System.out.println(k + " is a number");
System.out.println("The string representation"

+ " b is " + b) // calls b.toString()

CSE 413 Sp99 Java Notes, page 34

Input

Text input was (to say the least) very awkward in Java
1.0. A streamSystem.in is available, but it only
allows for character input. ClassStreamTokenizer
is available to parse input into numbers and character
strings, but the interface is fairly complicated. The
basic object wrapper classes likeInteger include
methods to parse character strings into values of the
appropriate type.

The text classes in Java 1.1 and later provide reasonably
complete formatting capabilities, but are somewhat
verbose and clumsy to use. The basic idea is fairly
simple, however. The stream classes provide streams
of bytes to and from various places (console, files,
network connections). The text classes filter the raw
bytes from streams and provide formatted input and
output with appropriate conversions between data
values and strings.

CSE 413 Sp99 Java Notes, page 35

File I/O

java.io includes an extensive set of classes and
methods that provide dialog boxes to select files and
open files as input and/or output streams. Once a file is
open, it works the same as any other I/O stream.

In Java 1.1 and earlier, Java Applets (executing in web
browsers) are not allowed to read and write files. Java
applications are allowed to do so, because they come
from presumably trusted sources.

Java 1.2 has a much more flexible security model that
allows "trusted" applets to access local resources like
files.

CSE 413 Sp99 Java Notes, page 36

Graphics

Packagejava.awt includes a fairly extensive 2-D
graphics library. Here's a simple application that
creates a window and draws a circle and label in it.

import java.awt.*;

// Class Drawing: a simple graphics window.
public class Drawing extends Frame {

public void paint(Graphics g) {
g.setColor(Color.black);
g.drawOval(15,10,30,30);
g.setColor(Color.red);
g.drawString("circle",15,60);

}
}

// Main program. Create and display drawing
public class GraphicsApplication {

public static void main(String args[]) {
Drawin g d = new Drawing();
d.resize(200,150);
d.setTitle("Drawing");
d.show();
d.toFront();

}

}

CSE 413 Sp99 Java Notes, page 37

Notes:

ClassDrawing extendsFrame , which ultimately
derived fromComponent . A Frame is a simple
window with a title bar and not much else.

Everything in a Java window — pictures, dialog
buttons, text fields — is derived directly or indirectly
from Component .

Methodpaint is called whenever an object becomes
visible on the screen. For our drawing window, we
define a simplepaint to draw a circle and label it.

(Warning:paint is called whenever the underlying
window manager needs to redraw the window. If
you've got an interactive debugger and you're
debugging a drawing window, be sure the debugger's
windows don't overlap the drawing. If it does, you'll
get lots of extra calls topaint .)

