
CSE 413
Programming Languages &
Implementation

Hal Perkins
Spring 2023

Context-Free Grammars and Parsing

1CSE413 Spring 2023

The Plan

• Parsing overview
• Context free grammars
• Grammar problems - ambiguity

2CSE413 Spring 2023

Parsing

• The syntax of most programming languages can be
specified by a context-free grammar (CGF)
– A grammar allowing recursive rules (A ::= … A …)

• Parsing: Given a grammar G and a sentence w in
L(G), traverse the derivation (parse tree) for w in
some standard order and do something useful at
each node
– The tree might not be produced explicitly, but the

control flow of a parser corresponds to a traversal

3CSE413 Spring 2023

Old Example

CSE413 Spring 2023 4

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G

w

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

intid

id expr

int

id expr

int

a = 1 ; if (a + 1) b = 2 ;

“Standard Order”

• For practical reasons we want the parser to be
deterministic (no backtracking), and we want to
examine the source program from left to right.
– (i.e., parse the program in linear time in the order

it appears in the source file)

5CSE413 Spring 2023

Common Orderings

• Top-down
– Start with the root
– Traverse the parse tree depth-first, left-to-right

(leftmost derivation)
– LL(k), recursive-descent

• Bottom-up
– Start at leaves and build up to the root

• Effectively a rightmost derivation in reverse(!)
– LR(k) and subsets (LALR(k), SLR(k), etc.)

6CSE413 Spring 2023

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

intid

id expr

int

id expr

int

a = 1 ; if (a + 1) b = 2 ;

“Something Useful”

• At each point (node) in the traversal, perform some
semantic action
– Construct nodes of full parse tree (rare)
– Construct abstract syntax tree (common)
– Construct linear, lower-level representation (more

common in later parts of a modern compiler)
– Generate target code or interpret on the fly

(1-pass compilers & interpreters; not common in
production compilers – but works for our project)

7CSE413 Spring 2023

Context-Free Grammars (review)

• Formally, a grammar G is a tuple <N,Σ,P,S>
where:
– N a finite set of non-terminal symbols
– Σ a finite set of terminal symbols
– P a finite set of productions

• A subset of N × (N È Σ)*

– S the start symbol, a distinguished element of N
• If not specified otherwise, this is usually assumed to be

the non-terminal on the left of the first production

8CSE413 Spring 2023

Standard Notations

• a, b, c elements of Σ
• w, x, y, z elements of Σ*
• A, B, C elements of N
• X, Y, Z elements of N Σ
• a, b, g elements of (N Σ)*
• A a or A ::= a if <A, a> in P

9

È
È

CSE413 Spring 2023

Derivation Relations (1)

• a A g => a b g iff A ::= b in P
– derives

• A =>* w if there is a chain of productions starting with
A that generates w
– transitive closure

10CSE413 Spring 2023

Derivation Relations (2)

• w A g =>lm w b g iff A ::= b in P
– derives leftmost

• a A w =>rm a b w iff A ::= b in P
– derives rightmost

• Parsers normally deal with only leftmost or rightmost
derivations – not random orderings

11CSE413 Spring 2023

Languages

• For A in N, L(A) = { w | A =>* w }
– i.e., set of strings (words, terminal symbols)

generated by nonterminal A
• If S is the start symbol of grammar G, we define

L(G) = L(S)

12CSE413 Spring 2023

Reduced Grammars

• Grammar G is reduced iff for every production
A ::= a in G there is some derivation

S =>* x A z => x a z =>* xyz
– i.e., no production is useless

• Convention: we will use only reduced grammars

13CSE413 Spring 2023

Example

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

14CSE413 Spring 2023

program

int

• Top down,
Leftmost derivation
of a = 1 + b ; statement

assignStmt

id

a 1

expr expr

+ b

exprid

= ;

Example

• Grammar

S ::= aABe
A ::= Abc | b
B ::= d

• Top down, leftmost
derivation of: abbcde

15CSE413 Spring 2023

S

b

A

b c d

A

a e

B

Ambiguity

• Grammar G is unambiguous iff every w in L(G) has
a unique leftmost (or rightmost) derivation
– Fact: either unique leftmost or unique rightmost

implies the other
• A grammar without this property is ambiguous

– Other grammars that generate the same language
might be unambiguous

• We need unambiguous grammars for parsing
– Our compiler or interpreter shouldn’t have to

choose the meaning of the input – if the grammar
is unambiguous there’s only one choice

16CSE413 Spring 2023

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• Exercise: show that this is ambiguous

– How? Show two different leftmost or rightmost
derivations for the same string

– Equivalently: show two different parse trees for the
same string

17CSE413 Spring 2023

Example (cont)

• Give a leftmost derivation of 2+3*4 and show the
parse tree

18

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

CSE413 Spring 2023

expr

int

2

expr expr

+

expr expr

*

int int

3 4

Example (cont)

• Give a different leftmost derivation of 2+3*4 and show
the parse tree

19

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

CSE413 Spring 2023

expr

int

4

exprexpr

*

expr expr

+

int int

2 3

expr

int

2

expr expr

+

expr expr

*

int int

3 4

(2+3) * 4 2 + (3* 4)

Another example

• Give two different leftmost derivations of 5+6+7

20

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

CSE413 Spring 2023

expr

int

5

expr expr

+

expr expr

+

int int

6 7

expr

int

7

exprexpr

+

expr expr

+

int int

5 6

5 + (6+7) (5+6) + 7

What’s going on here?

• This grammar has no notion of precedence or
associatively

• Standard solution
– Create a non-terminal for each level of

precedence
– Isolate the corresponding part of the grammar
– Force the parser to recognize higher precedence

subexpressions first

21CSE413 Spring 2023

Classic Expression Grammar

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

22CSE413 Spring 2023

Check:
Derive 2+3*4

23

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

CSE413 Spring 2023

expr

int

2

expr term

+

term factor

*

factor
int

int

4

factor

term

3

Separation of non-
terminals enforces
precedence

Check:
Derive 5+6+7

24

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

CSE413 Spring 2023

expr

+

term

Note interaction
between left- vs
right-recursive rules
and resulting
associativity

expr

int

5

factor

int
factor

term

7

factor

int

6 +

termexpr

Check:
Derive 5+(6+7)

25

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

CSE413 Spring 2023

exercise

Another Classic Example

• Grammar for conditional statements
stmt ::= if (cond) stmt

| if (cond) stmt else stmt
| assign

• Exercise: show that this is ambiguous
– How?

26CSE413 Spring 2023

One Derivation
stmt ::= if (cond) stmt

| if (cond) stmt else stmt
| assign

27CSE413 Spring 2023

if (cond) if (cond) stmt else stmt

stmt

stmt

if (cond)
if (cond)

stmt
else

stmt

Another Derivation
stmt ::= if (cond) stmt

| if (cond) stmt else stmt
| assign

28CSE413 Spring 2023

if (cond) if (cond) stmt else stmt

stmt

stmt

if (cond)
if (cond)

stmt
else

stmt

Solving if Ambiguity

• Fix the grammar to separate if statements with
else from if statements with no else
– Done in Java reference grammar
– Adds lots of non-terminals

• Need productions for things like “while
statement that contains an unmatched if” and
“while statement with only matched ifs”, etc.
etc. etc.

• Use some ad-hoc rule in parser
– “else matches closest unpaired if”

29CSE413 Spring 2023

Parser Tools and Operators

• Most parser tools can cope with ambiguous
grammars
– Makes life simpler if used with discipline

• Typically one can specify operator precedence &
associativity
– Allows simpler, ambiguous grammar with fewer

nonterminals as basis for generated parser,
without creating problems

30CSE413 Spring 2023

Parser Tools and Ambiguous Grammars

• Possible rules for resolving other problems
– Earlier productions in the grammar preferred to

later ones
– Longest match used if there is a choice

• Parser tools normally allow for this
– But be sure that what the tool does is really what

you want
• (Order in the input is particularly error-prone –

reordering the input lines can change the
meaning! L)

31CSE413 Spring 2023

Or…

• If the parser is hand-written, either fudge the grammar
or the parser, or cheat a little where it helps.

to be continued…

32CSE413 Spring 2023

