
CSE 413
Programming Languages &
Implementation

Hal Perkins
Spring 2023

Grammars, Scanners & Regular Expressions

1CSE413 Spring 2023

Agenda

• Overview of language recognizers
• Basic concepts of formal grammars
• Scanner Theory

– Regular expressions
– Finite automata (to recognize regular expressions)

• Scanner Implementation

2CSE413 Spring 2023

And the point is…

• How do we execute this?

int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• Or, more concretely, how do we program a computer to
understand and carry out a computation written as text in
a file? The computer only knows 1’s & 0’s: encodings of
instructions and data

3CSE413 Spring 2023

Compilers vs. Interpreters (recall)

• Interpreter
– A program that reads a source program and

executes that program
• Compiler

– A program that translates a program from one
language (the source) to another (the target)

• For both of these we need to represent the program
in some suitable data structure (usually a tree)
– With MUPL we started with the tree and didn’t

worry about where it came from

CSE413 Spring 2023 4

Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}
– May involve repeated analysis of some statements

(loops, functions)
– MUPL was a special case of this – a function to

evaluate expressions under a given environment
5CSE413 Spring 2023

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program in

another language
– Presumably easier to execute or more efficient
– Usually “improve” the program in some fashion

• Offline process
– Tradeoff: compile time overhead (preprocessing

step) vs execution performance

6CSE413 Spring 2023

Hybrid approaches

• Well-known example: Java
– Compile Java source to byte codes – Java Virtual

Machine language (.class files)
– Execution

• Interpret byte codes directly (interpreter
included in JVM), or

• Compile some or all byte codes to native code
– Just-In-Time compiler (JIT) – detect hot spots &

compile on the fly to native code when executed
repeatedly (avoid interpretation overhead on
repeated executions)

7CSE413 Spring 2023

Compiler/Interpreter Structure

• First approximation
– Front end: analysis

• Read source program and understand its
structure and meaning

– Back end: synthesis
• Execute or generate equivalent target program

8

Source TargetFront End Back End

CSE413 Spring 2023

Common Issues

• Compilers and interpreters both must read the input –
a stream of characters – and “understand” it: analysis

w h i l e (k < l e n g t h) { <nl>
<tab> i f (a [k] > 0) <nl> <tab>
<tab>{ n P o s + + ; } <nl> <tab> }

9CSE413 Spring 2023

Programming Language Specs

• Since the 1960s, the syntax of every significant
programming language has been specified by a
formal grammar
– First done in 1959 with BNF (Backus-Naur Form

or Backus-Normal Form) used to specify the
syntax of ALGOL 60

– Adapted from the linguistics community
(Chomsky)

10CSE413 Spring 2023

Grammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

11CSE413 Spring 2023

Productions

• The rules of a grammar are called productions
• Rules contain

– Nonterminal symbols: grammar variables (program,
statement, id, etc.)

– Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, (, {,), }, …)

• Meaning of production
nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, any instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

• Often, there are two or more productions for a single
nonterminal – can use any at different points in a derivation

12CSE413 Spring 2023

Alternative Notations

• There are several common notations for productions;
all mean the same thing

ifStmt ::= if (expr) stmt
ifStmt if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

13CSE413 Spring 2023

Context-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S> where
N a finite set of non-terminal symbols
Σ a finite set of terminal symbols
P a finite set of productions

A subset of N × (N È Σ)*
(can think of these as rules from N → (N È Σ)*)

S the start symbol, a distinguished element of N
If not otherwise specified, this is usually assumed to be
the non-terminal on the left of the first production

CSE413 Spring 2023 14

Example Derivation

CSE413 Spring 2023 B-15

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

a = 1 ; if (a + 1) b = 2 ;

Example Derivation

a = 1 ; if (a + 1) b = 2 ;
CSE413 Spring 2023 B-16

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9program

int

program statement

statement

assignStmt

expr
id

int

ifStmt

expr expr

id int

assignStmt

exprid

expr statement

Parsing

• Parsing: reconstruct the derivation (syntactic
structure) of a program

• In principle, a single recognizer could work directly
from the concrete, character-by-character grammar

• In practice this is never done

17CSE413 Spring 2023

Parsing & Scanning

• In real compilers the recognizer is split into two
phases
– Scanner: translate input characters to tokens

• Also, report lexical errors like illegal characters
and illegal symbols

– Parser: read token stream and reconstruct the
derivation

• Typically a procedural interface – parser asks the
scanner for new tokens when needed

18

Scanner Parsersource tokens

CSE413 Spring 2023

Scanner Example
• Input text

// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Tokens are atomic items, not character strings*
– Comments and whitespace are not tokens in most

programming languages
• But sometimes whitespace does matter

Examples: Python indentation, Ruby newlines
*We might fudge this a little in our final programming projects, but for now let’s keep the distinction

19

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

CSE413 Spring 2023

Parser Example

• Token Stream Input

20

• Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

CSE413 Spring 2023

Why Separate the Scanner and Parser?

• Simplicity & Separation of Concerns
– Scanner hides details from parser (input file

handling, comments, whitespace, etc.)
– Parser is easier to build; has simpler input stream

(tokens)
• Efficiency

– Scanner can use simpler, faster design
• (But still often consumes a surprising amount of

the compiler’s total execution time if you’re not
careful)

21CSE413 Spring 2023

Tokens

• Idea: we want a distinct token kind (lexical class) to
represent each distinct terminal symbol in the
programming language
– Examine the grammar to find these

• Some tokens may have attributes. Examples:
– All integer constants are a single kind of token, but

the actual value (17, 42, …) will be an attribute
– Identifier tokens carry the actual identifier string as

an attribute of the single “identifier” token kind

22CSE413 Spring 2023

Typical Programming Language Tokens

• Operators & Punctuation
– + - * / () { } [] ; : :: < <= == = != !

…
– Each of these is a distinct lexical class

• Keywords
– if while for goto return switch void …
– Each of these is also a distinct lexical class (not a string)

• Identifiers
– A single ID lexical class, but parameterized by actual id

• Integer constants
– A single INT lexical class, but parameterized by int value

• Other constants (doubles, strings, …), etc.

23CSE413 Spring 2023

Principle of Longest Match

• In most languages, the scanner should pick the
longest possible string to make up the next token if
there is a choice

• Example
return iffy != dowhile;

should be recognized as 5 tokens

not more (i.e., not parts of words or identifiers, not !
and = as separate tokens)

24

RETURN ID(iffy) NEQ ID(dowhile) SCOLON

CSE413 Spring 2023

Formal Languages & Automata
Theory (in one slide)
• Alphabet: a finite set of symbols
• String: a finite, possibly empty sequence of symbols from

an alphabet
• Language: a set, often infinite, of strings
• Finite specifications of (possibly infinite) languages

– Automaton – a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)

– Grammar – a generator; a system for producing all
strings in the language (and no other strings)

• A particular language may be specified by many different
grammars and automata

• A grammar or automaton specifies only one language

25CSE413 Spring 2023

Regular Expressions and FAs

• The lexical grammar (structure) of most programming
languages can be specified with regular expressions
– Not always, e.g., ancient FORTRAN and some others,

but can usually cheat in the unusual corner cases
• Tokens can be recognized by a deterministic finite

automaton (DFA)
– Can be either table-driven or built by hand based on

lexical grammar

• Facts (er, theorems): Any language that can be generated
by regular expressions can be recognized by a DFA. For
every DFA, there is a set of regular expressions that
generate the language that the DFA recognizes.

26CSE413 Spring 2023

Regular Expressions

• Defined over some alphabet Σ
– For programming languages, commonly ASCII or

Unicode
• If re is a regular expression, L(re) is the language (set

of strings) generated by re

• Many software libraries and languages have “regular
expression” packages (really “string processing”
packages) that include things that go beyond actual
mathematical regular expressions. We will limit
things to core regular expressions only for now.

27CSE413 Spring 2023

Fundamental REs

re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

28

Æ

CSE413 Spring 2023

Operations on REs

re L(re) Notes
rs L(r)L(s) Concatenation
r | s L(r) L(s) Combination (union)
r* L(r)* 0 or more occurrences

(Kleene closure)

29

• Precedence: * (highest), concatenation, | (lowest)
• Parentheses can be used to group REs as needed

È

CSE413 Spring 2023

Examples

CSE413 Spring 2023 30

re Meaning
+ single + character
! single ! character
= single = character
!= 2 character sequence "!="
xyzzy 5 character sequence ”xyzzy”
(1|0)* 0 or more binary digits
(1|0)(1|0)* 1 or more binary digits
0|1(0|1)* sequence of binary digits with no

leading 0’s, except for 0 itself

Abbreviations

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

31

• The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Typical examples:

CSE413 Spring 2023

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

32CSE413 Spring 2023

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

33CSE413 Spring 2023

Sequence of 1 or more a’s, b’s, and c’s

Sequence of 0 or more a’s, b’s, and c’s

Sequence of 1 or more decimal digits

Sequence of 1 or more decimal digits
without a leading 0
Identifiers in Your Favorite
Programming Language™ J

Abbreviations

• Many systems allow abbreviations to make writing
and reading definitions easier

name ::= re

– Restriction: abbreviations may not be circular
(recursive) either directly or indirectly

(otherwise it would no longer be a regular
expression – would be a context-free grammar)

34CSE413 Spring 2023

Example

• Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+
number ::= digits (. digits)?

([eE] (+ | -)? digits) ?

35CSE413 Spring 2023

Recognizing REs

• Finite automata can be used to recognize strings
generated by regular expressions

• Can build by hand or automatically
– Not always totally straightforward, but can be done

systematically
– Compiler tools like Lex, Flex, and JLex do this

automatically from a set of REs read as input
– Even if you don’t use a FA explicitly, it is a good

way to think about the recognition problem

36CSE413 Spring 2023

Finite State Automaton (FSA)

• A finite set of states
– One marked as initial state
– One or more marked as final states
– States sometimes labeled or numbered

• A set of transitions from state to state
– Each labeled with symbol from Σ, or ε

• Operate by reading input symbols (usually characters)
– Transition can be taken if labeled with current symbol
– ε-transition can be taken at any time

• Accept when final state reached & no more input
– Difference in a scanner: start scan in initial state at

previous point in input. When a final state is reached,
recognize the token corresponding to that final state

• Reject if no transition possible, or no more input and not in
final state (DFA)

37CSE413 Spring 2023

Example: FSA for “cat”

regexp = cat

CSE413 Spring 2023 38

a tc

Example: FSA for “cat” and “cow”

regexp = c(at|ow)

CSE413 Spring 2023 39

Example: FSA for “cat” and “cow”

regexp = c(at|ow)

CSE413 Spring 2023 40

a tc

o
w

Example: FSA for “cat” and “cow” v2

regexp = c(at|ow)

CSE413 Spring 2023 41

Example: FSA for “cat” and “cow” v2

regexp = c(at|ow)

CSE413 Spring 2023 42

a tc

o w

Example: FSA for “baa”, “baabaa”, …

regexp = (baa)+

CSE413 Spring 2023 43

Example: FSA for “baa”, “baabaa”, …

regexp = (baa)+

CSE413 Spring 2023 44

a a

b

b

Example: FSA for “ha”, “haha”, …

regexp = ha(ha)*

CSE413 Spring 2023 45

Example: FSA for “ha”, “haha”, …

regexp = ha(ha)*

CSE413 Spring 2023 46

ah

h

DFA vs NFA

• Deterministic Finite Automata (DFA)
– No choice of which transition to take under any

condition
• Non-deterministic Finite Automata (NFA)

– Choice of transition in at least one case
• This includes transitions on ε (the empty string)

– Accept - if some way to reach final state on given
input

– Reject - if no possible way to final state

47CSE413 Spring 2023

FAs in Scanners

• Want DFA for speed (no backtracking)

• Conversion from regular expressions to NFA is easy

• There is a well-defined procedure for converting a
NFA to an equivalent DFA (subset construction)
– See any formal language or compiler textbook for

details (RE to NFA to DFA to minimized DFA)

48CSE413 Spring 2023

Example: DFA for hand-written scanner

• Idea: show a hand-written DFA for some typical
programming language constructs
– Use this to outline logic of a hand-written scanner

• Setting: Scanner is called when parser needs a new token
– Scanner knows (saves) current position in input
– From there, use a DFA to recognize the longest

possible input sequence that makes up a token and
return that token; save updated position for next time

• Disclaimer: we’re abusing the DFA notation a little – not
all arrows in the diagram correspond to consuming an
input character, but meaning should be pretty obvious

49CSE413 Spring 2023

Scanner DFA Example (1)

50

0

Accept LPAREN(2

Accept RPAREN) 3

whitespace
or comments

Accept SCOLON; 4

Accept EOFend of input 1

CSE413 Spring 2023

Scanner DFA Example (2)

51

Accept NEQ! 6

Accept NOT7

5 =

other

Accept LEQ< 9

Accept LESS10

8 =

other

CSE413 Spring 2023

Scanner DFA Example (3)

52

[0-9]

Accept INT12

11

other

[0-9]

CSE413 Spring 2023

Scanner DFA Example (4)

• Strategies for handling identifiers vs keywords
– Hand-written scanner: look up identifier-like things in table of

keywords to classify (good application of perfect hashing)
– Machine-generated scanner: generate DFA with appropriate

transitions to recognize keywords
• Lots ’o states, but efficient (no extra lookup step)

53

[a-zA-Z]

Accept ID or keyword14

13

other

[a-zA-Z0-9_]

CSE413 Spring 2023

Implementing a Scanner by Hand:
Token Representation
• A token is a simple, tagged structure. Something like:

public class Token {
public Kind kind; // token’s lexical class
public int intVal; // integer value if class = INT
public String id; // actual identifier if class = ID
public enum Kind { // lexical classes:

EOF, // “end of file” token
ID, // identifier, not keyword
INT, // integer
LPAREN, // punctuation …
SCOLN,
WHILE, // keywords …
IF,
// etc. etc. etc. …

54CSE413 Spring 2023

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

55CSE413 Spring 2023

Scanner getToken() pseudocode
// return next input token
public Token getToken() {

Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.Kind.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token.Kind.LPAREN); getch(); return result;
case ‘)': result = new Token(Token.Kind.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.Kind.SCOLON); getch(); return result;

// etc. …

56CSE413 Spring 2023

getToken() (2)
case '!': // ! or !=

getch();
if (nextch == '=') {

result = new Token(Token.Kind.NEQ); getch(); return result;
} else {

result = new Token(Token.Kind.NOT); return result;
}

case '<': // < or <=
getch();
if (nextch == '=') {

result = new Token(Token.Kind.LEQ); getch(); return result;
} else {

result = new Token(Token.Kind.LESS); return result;
}

// etc. …

57CSE413 Spring 2023

getToken() (3)

case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
// integer constant
String num = nextch;
getch();
while (nextch is a digit) {

num = num + nextch; getch();
}
result = new Token(Token.Kind.INT, Integer(num).intValue());
return result;

…

58CSE413 Spring 2023

getToken (4)

case 'a': … case 'z':
case 'A': … case 'Z': // id or keyword

string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();
}
if (s is a keyword) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token.Kind.ID, s);
}
return result;

59CSE413 Spring 2023

Alternatives

• Use a tool to build the scanner from the (regexp) grammar
– Resulting code often can be more efficient than hand-

coded!

• Build an ad-hoc scanner using regular expression
package in implementation language
– Ruby, Perl, Java, many others
– Strongly suggest you use this for our project (good

excuse to learn the Ruby regexp package; much, much
less code if you use the regexp package to break input
lines into words and symbols, etc.)

60CSE413 Spring 2023

Next …

• Context free grammars & ambiguity

• Recursive-descent top-down parsers

CSE413 Spring 2023 61

