
CSE 413
Programming Languages &
Implementation

Hal Perkins
Spring 2021

Dynamic Languages

CSE 413 Spring 2021 1

References

• An Efficient Implementation of Self, a dynamically-
typed object-oriented language based on prototypes,
Chambers, Unger, Lee, OOPSLA 1989

• Earlier versions of this lecture by Vijay Menon, CSE
501 Sp09, adapted from slides by Kathleen Fisher

CSE 413 Spring 2021 2

Dynamic Typing (reminder)

JavaScript:

function foo(a, b) {
t1 = a.x; // runtime field lookup
t2 = b.y(); // runtime method lookup
t3 = t1 + t2; // runtime dispatch on ‘+’
return t3;
}

CSE 413 Spring 2021 3

Overview

• Self
– 30(!) year old research language
– One of earliest JIT compilation systems
– Pioneered techniques used today

• JavaScript
– Self with a Java syntax (plus other things…)
– Lots of interest in making it fast in recent years

since it is the available execution engine in all web
browsers

CSE 413 Spring 2021 4

Self

• Prototype-based pure object-oriented language
• Designed by Randall Smith (Xerox PARC) and David

Ungar (Stanford University)
– Successor to Smalltalk-80
– “Self: The power of simplicity” at OOPSLA ‘87
– Initial implementation done at Stanford; then

project shifted to Sun Microsystems Labs
– Vehicle for implementation research

• Current version available from selflanguage.org

CSE 413 Spring 2021 5

Design Goals

• Occam’s Razor: Conceptual economy
– Everything is an object
– Everything done using

messages
– No classes
– No variables

• Concreteness
– Objects should seem “real”
– GUI to manipulate objects directly

CSE 413 Spring 2021 6

How successful?

• Very well-designed language, but…
• Few users: not a popular success
• However, many research innovations

– Very simple computational model
– Enormous advances in compilation techniques
– Influenced the design of Java compilers
– JavaScript object model based on Self

CSE 413 Spring 2021 7

Language Overview

• Dynamically typed
• Everything is an object
• All computation via message passing
• Creation and initialization done by copying example

(prototype) object
• Operations on objects:

– send messages
– add new slots
– replace old slots
– remove slots

CSE 413 Spring 2021 8

Objects and Slots

Object consists of named slots.
– Data

• Such slots return contents upon evaluation; so act
like variables

– Assignment
• Set the value of

associated slot
– Method

• Slot contains
Self code

– Parent
• References an object to inherit its slots

CSE 413 Spring 2021 9

Messages and Methods

• When a message is sent,
search the receiver object
for a slot with that name

• If none found, all parents are
searched
– Runtime error if more than one

parent has a slot with the
same name

• If slot found, its contents are
evaluated and returned
– Runtime error if no slot found

CSE 413 Spring 2021 10

parent*

x 3

x: ¬

parent*

print …

clone …

Messages and Methods

CSE 413 Spring 2021 11

parent*

x 3

x: ¬

parent*

print …

clone …

obj x 3

obj print print point
object

obj x: 4 obj
after setting
x slot to 4.

Mixing State and Behavior

CSE 413 Spring 2021 12

parent* …

+ add points

x 4

y 17

x: ¬

parent*

y: ¬

x random
number
generator

y 0

parent*

y: ¬

Object Creation

• To create an object,
we copy an old one

• We can add new
methods, override
existing ones, or even
remove methods

CSE 413 Spring 2021 13

• These operations also apply to parent slots

Changing Parent Pointers

CSE 413 Spring 2021 14

parent*: ¬

name Charles

name: ¬

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance.

p

princefrog

Changing Parent Pointers

CSE 413 Spring 2021 15

parent*: ¬

name Charles

name: ¬

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance

p

princefrog

Disadvantages of classes?

• Classes require programmers to understand a more
complex model
– To make a new kind of object, we have to create a

new class first
– To change an object, we have to change the class
– Infinite meta-class regression (What is the class of

a class? Or: Is a class an object, and if not, what
is it?)

• But: Does Self require programmers to reinvent
structure?
– Common to structure Self programs with traits:

objects that simply collect behavior for sharing

CSE 413 Spring 2021 16

Contrast with C++

• C++
– Restricts expressiveness to ensure efficient

implementation and type safety
• “message not understood” is not possible

• Self
– Provides unbreakable high-level model of

underlying machine
– Compiler does fancy optimizations to obtain

acceptable performance

CSE 413 Spring 2021 17

Implementation Challenges I

• Many, many slow function calls:
– Function calls generally somewhat expensive
– Dynamic dispatch makes message invocation

even slower than typical procedure calls
– OO programs tend to have lots of small methods
– Everything is a message: even variable access!

CSE 413 Spring 2021 18

“The resulting call density of pure object-oriented programs
is staggering, and brings naïve implementations to their
knees” [Chambers & Ungar, PLDI 89]

Implementation Challenges II

• No static type system
– Each reference could point to any object, making it

hard to find methods statically
• No class structure to enforce sharing

– Copies of methods in every object creates lots of
space overhead

CSE 413 Spring 2021 19

Optimized Smalltalk-80 is roughly 10 times slower
than optimized C

Optimization Strategies

• Avoid per-object space requirements
• Compile, don’t interpret
• Avoid method lookup
• Inline methods wherever possible

– Saves method call overhead
– Enables further optimizations

CSE 413 Spring 2021 20

Clone Families
(Objects created from same prototype)

CSE 413 Spring 2021 21

Avoid per object data

Mutable

Fixed

prototype

Mutable

Fixed

Mutable

Fixed

Mutable

Fixed

Mutable

Fixed

clone family

Mutable

Map
Mutable

MapMapMap

MutableMutable

Fixed Info
Model

Implementation

Map:

Dynamic Compilation

CSE 413 Spring 2021 22

Avoid interpreting

LOAD R0
MOV R1 2
ADD R1 R2
…

010010100
100110001
001011010
00110

Source Byte Code Machine Code

Method
is entered

First
method
execution

• Method is converted to byte codes when entered into the system
• Compiled to machine code when first executed
• Code stored in cache

• if cache fills, previously compiled method flushed
• Requires entire source (byte) code to be available at runtime

Avoid method lookup

Lookup Cache

• Cache of recently used methods, indexed by
(receiver type, message name) pairs

• When a message is sent, compiler first consults
cache
– if found: invokes associated code
– if absent: performs general lookup and potentially

updates cache
• Berkeley Smalltalk would have been 37% slower

without this optimization

CSE 413 Spring 2021 23

Static Type Prediction

• Compiler predicts types that are unknown but
likely:
– Arithmetic operations (+, -, <, etc.) have small

integers as their receivers 95% of time in
Smalltalk-80

– ifTrue had Boolean receiver 100% of the time.
• Compiler inlines code (and test to confirm

guess):

CSE 413 Spring 2021 24

if type = smallInt jump to method_smallInt
call general_lookup

Avoid method lookup

Avoid method lookup

Inline Caches

• First message send from a call site:
– general lookup routine invoked & backpatch

• Call site back-patched previously
– is previous method still correct?

• yes: invoke code directly
• no: proceed with general lookup & backpatch

• Successful about 95% of the time
• All compiled implementations of Smalltalk and Self

use inline caches.

CSE 413 Spring 2021 25

Avoid method lookup

Polymorphic Inline Caches

• Typical call site has <10 distinct receiver types
– Often can cache all receivers

• At each call site, for each new receiver, extend
patch code:

• After some threshold, revert to simple inline
cache (megamorphic site)

• Order clauses by frequency
• Inline short methods into PIC code

CSE 413 Spring 2021 26

if type = rectangle jump to method_rect
if type = circle jump to method_circle
call general_lookup

Inline methods

Customized Compilation

• Compile several copies of each method, one for each
receiver type

• Within each copy:
– Compiler knows the type of self
– Calls through self can be statically selected and

inlined
• Enables downstream optimizations
• Increases code size

CSE 413 Spring 2021 27

Inline methods

Type Analysis

• Constructed by compiler using flow
analysis

• Type: set of possible maps for object
– Singleton: know map statically
– Union/Merge: know expression has one of a

fixed collection of maps
– Unknown: know nothing about expression

• If singleton, we can inline method
• If type is small, we can insert type test

and create branch for each possible
receiver (type casing)

CSE 413 Spring 2021 28

Inline methods

Message Splitting

• Type information above a merge point is
often better

• Move message send “before” merge
point:
– duplicates code
– improves type information
– allows more inlining

CSE 413 Spring 2021 29

Inline methods

PICS as Type Source

• Polymorphic inline caches build a call-site
specific type database as the program runs

• Compiler can use this runtime information
rather than the result of a static flow analysis
to build type cases

• Must wait until PIC has collected information
– When to recompile?
– What should be recompiled?

• Initial fast compile yielding slow code; then
dynamically recompile – hotspots

CSE 413 Spring 2021 30

Performance Improvements

• Initial version of Self was 4-5 times slower
than optimized C

• Adding type analysis and message splitting
got within a factor of 2 of optimized C

• Replacing type analysis with PICS improved
performance by further 37%

CSE 413 Spring 2021 31

Fairly recent Self compiler is within a
factor of 2 of optimized C.

Impact on Java

CSE 413 Spring 2021 32

Self with
PICs

Animorphics
Java

Java
Hotspot

Sun cancels Self

Java becomes popular

Sun buys A.J.

Animorphics
Smalltalk

Summary of Self

• “Power of simplicity”
– Everything is an object: no classes, no variables
– Provides high-level model that can’t be violated

(even during debugging)
• Fancy optimizations recover reasonable performance
• Many techniques now used in Java compilers
• Papers describing various optimization techniques

available from Self web site

CSE 413 Spring 2021 33

JavaScript

• Self-like language with Java syntax
– Dynamic OO language
– Prototypes instead of classes
– First-class closures as values
– Nothing to do with Java beyond syntax

• Originated in Netscape

• “Standard” on today’s browsers

CSE 413 Spring 2021 34

High-performance JavaScript

• Self approach:
– V8 (Google Chrome)
– SquirrelFish Extreme (Safari / WebKit)

• Trace compilation:
– TraceMonkey (Firefox)
– Tamarin (Adobe Flash/Flex)

CSE 413 Spring 2021 35

V8 (Google Chrome)

• Three primary features
– Fast property access

• Hidden classes
– Dynamic compiler

• Compile on first invocation
• Inline caching with back patching

– Generational garbage collection
• Segmented by types

• See http://code.google.com/apis/v8/design.html

CSE 413 Spring 2021 36

Trace-Based Compilation

• Interpret initially
• Record trace information

– Single entry, multiple exit
– Loop header is typically trace start

• Compile hot trace (hot path through flowgraph)
– Interpreter jumps to trace code when available
– Stitch multiple traces together

• Specialize hot path (omit redundant checks)
– Claim this achieves benefits of inline caching

CSE 413 Spring 2021 37

Conclusions?

• For you to decide…

CSE 413 Spring 2021 38

