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Dynamic Typing (reminder)

JavaScript:

function foo(a, b) {
t1 = a.x;     // runtime field lookup 
t2 = b.y();   // runtime method lookup
t3 = t1 + t2; // runtime dispatch on ‘+’
return t3;
}
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Overview

• Self
– 30(!) year old research language
– One of earliest JIT compilation systems
– Pioneered techniques used today

• JavaScript
– Self with a Java syntax (plus other things…)
– Lots of interest in making it fast in recent years 

since it is the available execution engine in all web 
browsers
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Self

• Prototype-based pure object-oriented language
• Designed by Randall Smith (Xerox PARC) and David 

Ungar (Stanford University)
– Successor to Smalltalk-80
– “Self: The power of simplicity” at OOPSLA ‘87
– Initial implementation done at Stanford; then 

project shifted to Sun Microsystems Labs
– Vehicle for implementation research

• Current version available from selflanguage.org

CSE 413 Spring 2021 5



Design Goals

• Occam’s Razor: Conceptual economy
– Everything is an object
– Everything done using

messages
– No classes 
– No variables

• Concreteness
– Objects should seem “real”
– GUI to manipulate objects directly
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How successful?

• Very well-designed language, but…
• Few users: not a popular success
• However, many research innovations

– Very simple computational model
– Enormous advances in compilation techniques
– Influenced the design of Java compilers
– JavaScript object model based on Self
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Language Overview

• Dynamically typed
• Everything is an object
• All computation via message passing
• Creation and initialization done by copying example 

(prototype) object
• Operations on objects:

– send messages
– add new slots
– replace old slots
– remove slots
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Objects and Slots

Object consists of named slots.
– Data

• Such slots return contents upon evaluation; so act 
like variables

– Assignment
• Set the value of 

associated slot
– Method 

• Slot contains
Self code

– Parent
• References an object to inherit its slots
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Messages and Methods

• When a message is sent, 
search the receiver object 
for a slot with that name

• If none found, all parents are 
searched
– Runtime error if more than one 

parent has a slot with the 
same name

• If slot found, its contents are 
evaluated and returned
– Runtime error if no slot found 
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x 3

x: ¬

parent*

print …

clone …



Messages and Methods

CSE 413 Spring 2021 11

parent*

x 3

x: ¬

parent*

print …

clone …

obj x 3

obj print print point 
object

obj x: 4 obj
after setting 
x slot to 4.



Mixing State and Behavior
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parent* …

+ add points

x 4

y 17

x: ¬

parent*

y: ¬

x random 
number 
generator

y 0

parent*

y: ¬



Object Creation

• To create an object,
we copy an old one

• We can add new
methods, override
existing ones, or even
remove methods 
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• These operations also apply to parent slots



Changing Parent Pointers
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parent*: ¬

name Charles

name: ¬

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance.

p

princefrog



Changing Parent Pointers
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Disadvantages of classes?

• Classes require programmers to understand a more 
complex model
– To make a new kind of object, we have to create a 

new class first
– To change an object, we have to change the class 
– Infinite meta-class regression (What is the class of 

a class?  Or: Is a class an object, and if not, what 
is it?)

• But: Does Self require programmers to reinvent 
structure?
– Common to structure Self programs with traits: 

objects that simply collect behavior for sharing
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Contrast with C++

• C++ 
– Restricts expressiveness to ensure efficient 

implementation and type safety
• “message not understood” is not possible

• Self 
– Provides unbreakable high-level model of 

underlying machine
– Compiler does fancy optimizations to obtain 

acceptable performance
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Implementation Challenges I

• Many, many slow function calls:
– Function calls generally somewhat expensive
– Dynamic dispatch makes message invocation 

even slower than typical procedure calls
– OO programs tend to have lots of small methods
– Everything is a message: even variable access! 
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“The resulting call density of pure object-oriented programs 
is staggering, and brings naïve implementations to their 
knees” [Chambers & Ungar, PLDI 89]



Implementation Challenges II

• No static type system
– Each reference could point to any object, making it 

hard to find methods statically
• No class structure to enforce sharing 

– Copies of methods in every object creates lots of 
space overhead
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Optimized Smalltalk-80 is roughly 10 times slower 
than optimized C



Optimization Strategies

• Avoid per-object space requirements
• Compile, don’t interpret
• Avoid method lookup
• Inline methods wherever possible 

– Saves method call overhead
– Enables further optimizations
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Clone Families
(Objects created from same prototype)
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Avoid per object data
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Mutable
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Dynamic Compilation
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Avoid interpreting

LOAD R0
MOV R1 2
ADD R1 R2
…

010010100
100110001
001011010
00110

Source Byte Code Machine Code

Method
is entered

First
method 
execution

• Method is converted to byte codes when entered into the system
• Compiled to machine code when first executed
• Code stored in cache

• if cache fills, previously compiled method flushed
• Requires entire source (byte) code to be available at runtime 



Avoid method lookup

Lookup Cache

• Cache of recently used methods, indexed by 
(receiver type, message name) pairs

• When a message is sent, compiler first consults 
cache
– if found: invokes associated code
– if absent: performs general lookup and potentially 

updates cache
• Berkeley Smalltalk would have been 37% slower 

without this optimization 
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Static Type Prediction

• Compiler predicts types that are unknown but 
likely:
– Arithmetic operations (+, -, <, etc.) have small 

integers as their receivers 95% of time in 
Smalltalk-80

– ifTrue had Boolean receiver 100% of the time.
• Compiler inlines code (and test to confirm 

guess): 
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if type = smallInt jump to method_smallInt
call general_lookup

Avoid method lookup



Avoid method lookup

Inline Caches

• First message send from a call site:
– general lookup routine invoked & backpatch

• Call site back-patched previously
– is previous method still correct?

• yes: invoke code directly
• no: proceed with general lookup & backpatch

• Successful about 95% of the time
• All compiled implementations of Smalltalk and Self 

use inline caches.
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Avoid method lookup

Polymorphic Inline Caches

• Typical call site has <10 distinct receiver types 
– Often can cache all receivers

• At each call site, for each new receiver, extend 
patch code:

• After some threshold, revert to simple inline 
cache (megamorphic site)

• Order clauses by frequency
• Inline short methods into PIC code
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if type = rectangle jump to method_rect
if type = circle    jump to method_circle
call general_lookup



Inline methods

Customized Compilation

• Compile several copies of each method, one for each 
receiver type

• Within each copy:
– Compiler knows the type of self
– Calls through self can be statically selected and 

inlined
• Enables downstream optimizations
• Increases code size
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Inline methods

Type Analysis

• Constructed by compiler using flow 
analysis

• Type: set of possible maps for object 
– Singleton: know map statically
– Union/Merge: know expression has one of a 

fixed collection of maps
– Unknown: know nothing about expression

• If singleton, we can inline method
• If type is small, we can insert type test 

and create branch for each possible 
receiver (type casing)
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Inline methods

Message Splitting

• Type information above a merge point is 
often better

• Move message send “before” merge 
point:
– duplicates code
– improves type information
– allows more inlining
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Inline methods

PICS as Type Source

• Polymorphic inline caches build a call-site 
specific type database as the program runs

• Compiler can use this runtime information 
rather than the result of a static flow analysis 
to build type cases

• Must wait until PIC has collected information
– When to recompile?
– What should be recompiled?

• Initial fast compile yielding slow code; then 
dynamically recompile – hotspots
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Performance Improvements

• Initial version of Self was 4-5 times slower 
than optimized C

• Adding type analysis and message splitting
got within a factor of 2 of optimized C

• Replacing type analysis with PICS improved 
performance by further 37%
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Fairly recent Self compiler is within a 
factor of 2 of optimized C.



Impact on Java
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Self with
PICs

Animorphics
Java

Java 
Hotspot

Sun cancels Self

Java becomes popular

Sun buys A.J.

Animorphics
Smalltalk



Summary of Self

• “Power of simplicity”
– Everything is an object: no classes, no variables 
– Provides high-level model that can’t be violated 

(even during debugging)
• Fancy optimizations recover reasonable performance
• Many techniques now used in Java compilers 
• Papers describing various optimization techniques 

available from Self web site
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JavaScript

• Self-like language with Java syntax
– Dynamic OO language
– Prototypes instead of classes
– First-class closures as values
– Nothing to do with Java beyond syntax

• Originated in Netscape

• “Standard” on today’s browsers
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High-performance JavaScript

• Self approach:
– V8 (Google Chrome)
– SquirrelFish Extreme (Safari / WebKit)

• Trace compilation:
– TraceMonkey (Firefox)
– Tamarin (Adobe Flash/Flex)
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V8 (Google Chrome)

• Three primary features
– Fast property access

• Hidden classes
– Dynamic compiler

• Compile on first invocation
• Inline caching with back patching

– Generational garbage collection
• Segmented by types

• See http://code.google.com/apis/v8/design.html
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Trace-Based Compilation

• Interpret initially
• Record trace information

– Single entry, multiple exit
– Loop header is typically trace start

• Compile hot trace (hot path through flowgraph)
– Interpreter jumps to trace code when available
– Stitch multiple traces together

• Specialize hot path (omit redundant checks)
– Claim this achieves benefits of inline caching
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Conclusions?

• For you to decide…
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