
CSE 413
Programming Languages &
Implementation

Hal Perkins
Spring 2021

Java Implementation – JVMs, JITs &c

CSE 413 Spring 2021 1

Agenda

• Java virtual machine architecture
• .class files
• Class loading
• Execution engines

– Interpreters & JITs – various strategies
• Exception Handling

CSE 413 Spring 2021 2

Java Implementation Overview

• Java compiler (javac et al) produces machine-
independent .class files
– Target architecture is Java Virtual Machine (JVM),

a simple stack machine
• Java execution engine (java)

– Loads .class files (often from libraries)
– Executes code

• Either interprets stack machine code or
compiles to native code (JIT)

CSE 413 Spring 2021 3

JVM Architecture

• Abstract stack machine
• Implementation not required to use JVM specification

literally
– Only requirement is that execution of .class files

has specified effect
– Multiple implementation strategies depending on

goals
• Compilers vs interpreters
• Optimizing for servers vs workstations

CSE 413 Spring 2021 4

CSE 413 Spring 2021 5

Stack Machine Code Example
Hypothetical code for x = 2 * (m + n)

Compact: common opcodes just 1 byte wide; instructions have 0 or 1 operand

pushaddr x
pushconst 2
pushval n
pushval m
add
mult
store

@x
2
n
m

?
@x
2

m + n

?
@x

2*(m+n)

? ?

JVM Data Types

• Primitive types
– byte, short, int, long, char, float, double, boolean

• Reference types
– Non-generic only (more on this later)

CSE 413 Spring 2021 6

JVM Runtime Data Areas (1)

• Semantics defined by the JVM Specification
– Implementer may do anything that preserves

these semantics
• Per-thread data

– pc register
– Stack

• Holds frames (details below)
• May be a real stack or may be heap allocated

CSE 413 Spring 2021 7

JVM Runtime Data Areas (2)

• Per-VM data – shared by all threads
– Heap – objects allocated here (new)
– Method area – per-class data

• Runtime constant pool
• Field and method data
• Code for methods and constructors

• Native method stacks
– Regular C-like stacks or equivalent

CSE 413 Spring 2021 8

Frames

• Created when method invoked; destroyed when
method completes
– This is why Java “lambdas” aren’t real first-class

closures – environments not retained when
creating function exits

• Allocated on stack of creating thread
• Contents

– Local variables
– Operand stack used by JVM instructions
– Reference to runtime constant pool

• Symbolic data that supports dynamic linking
– Anything else the implementer wants

CSE 413 Spring 2021 9

Representation of Objects

• Implementer's choice
– JVM spec 3.7: “The Java virtual machine does not

mandate any particular internal structure for
objects”

– Likely possibilities
• Data + pointer to Class object
• Pair of pointers: one to heap-allocated data,

one to Class object

CSE 413 Spring 2021 10

JVM Instruction Set

• Stack machine
• Byte stream
• Instruction format

– 1 byte opcode
– 0 or more bytes of operands

• Instructions encode type information
– Verified when class loaded

CSE 413 Spring 2021 11

Instruction Sampler (1)

• Load/store
– Transfer values between local variables and

operand stack
– Different opcodes for int, float, double, addresses
– Load, store, load immediate

• Special encodings for load0, load1, load2,
load3 to get compact code for first few local
vars

CSE 413 Spring 2021 12

Instruction Sampler (2)

• Arithmetic
– Again, different opcodes for different types

• byte, short, char & boolean use int instructions
– Pop operands from operand stack, push result

onto operand stack
– Add, subtract, multiply, divide, remainder, negate,

shift, and, or, increment, compare
• Stack management

– Pop, dup, swap

CSE 413 Spring 2021 13

Instruction Sampler (3)

• Type conversion
– Widening – int to long, float, double; long to float,

double, float to double
– Narrowing – int to byte, short, char; double to int,

long, float, etc.

CSE 413 Spring 2021 14

Instruction Sampler (4)

• Object creation & manipulation
– New class instance
– New array
– Static field access
– Array element access
– Array length
– Instanceof, checkcast

CSE 413 Spring 2021 15

Instruction Sampler (5)

• Control transfer
– Unconditional branch – goto, jsr (originally used to

implement finally blocks)
– Conditional branch – ifeq, iflt, ifnull, etc.
– Compound conditional branches - switch

CSE 413 Spring 2021 16

Instruction Sampler (6)

• Method invocation
– invokevirtual
– invokeinterface
– invokespecial (constructors, superclass, private)
– invokestatic

• Method return
– Typed value-returning instructions
– Return for void methods

CSE 413 Spring 2021 17

Instruction Sampler (7)

• Exceptions: athrow
• Synchronication

– Model is monitors (cf any standard operating
system textbook)

– monitorenter, monitorexit
– Memory model greatly cleaned up in Java 5

CSE 413 Spring 2021 18

JVM and Generics

• Surprisingly, JVM has no knowledge of generic types
– Not checked at runtime, not available for

reflection, etc.
• Compiler erases all generic type info

– Resulting code is pre-generics Java
– Objects are class Object in resulting code &

appropriate casts are added
• Only one instance of each type-erased class – no

code expansion/duplication (as in C++ templates)

CSE 413 Spring 2021 19

Generics and Type Erasure

• Why did they do that?
– Compatibility: need to interop with existing code that

doesn’t use generics
• Existing non-generic code and new generic

libraries, or
• Newly written code and older non-generic classes

• Tradeoffs: only reasonable way to add generics given
existing world way back then, but
– Generic type information unavailable at runtime (casts,

instanceof, reflection)
– Can’t create new instance or array of generic type

• C#/CLR is different – generics reflected in CLR

CSE 413 Spring 2021 20

Class File Format

• Basic requirements are tightly specified
• Implementations can extend

– Examples: data to support debugging or profiling
– JVMs must ignore extensions they don’t recognize

• Very high-level, symbolic, lots of metadata –
much of the symbol table/type/other attribute
data produced by a compiler front end
– Supports dynamic class loading
– Allows runtime compilation (JITs), etc.

CSE 413 Spring 2021 21

Class Loaders

• One or more class loader (instances of
ClassLoader or its derived classes) is
associated with each JVM

• Responsible for loading the bits and
preparing them

• Different class loaders may have different
policies
– Eager vs lazy class loading, cache binary

representations, etc.
• May be user-defined, or the initial built-in

bootstrap class loader

CSE 413 Spring 2021 26

Readying .class Files for Execution

• Several distinct steps
– Loading
– Linking

• Verification
• Preparation
• Resolution of symbolic references

– Initialization

CSE 413 Spring 2021 27

Virtual Machine Startup

• Initial class specified in implementation-defined
manner
– Command line, IDE option panel, etc.

• JVM uses bootstrap class loader to load, link, and
initialize that class

• public static void main(String[])
method of initial class is executed to drive all further
execution

CSE 413 Spring 2021 34

Execution Engines

• Basic Choices
– Interpret JVM bytecodes directly
– Compile bytecodes to native code, which then

executes on the native processor
• Just-In-Time compiler (JIT)

CSE 413 Spring 2021 35

Hybrid Implementations

• Interpret or use very simple compiler most of
the time

• Identify “hot spots” by dynamic profiling
– Often per-method counter incremented on each

call
– Timer-based sampling, etc.

• Run optimizing JIT on hot code
– Data-flow analysis, standard compiler middle-end

optimizations, back-end instruction selection/
scheduling & register allocation

– Need to balance compilation cost against
responsiveness, expected benefits

• Different tradeoffs for desktop vs server JVMs

CSE 413 Spring 2021 36

JIT optimization implications

• JVM optimized code often combines code from
multiple classes
– One particularly common optimization: inlining

• Replace calls to getter/setter methods with
copies of method bodies (load/store from mem)

– Often extremely effective, but if any class is
reloaded, other compiled code that depended on
previous version is no longer valid

• JVM has logic to detect this and invalidate
previously compiled code, forcing JIT to rerun if
needed to optimize

CSE 413 Spring 2021 37

C# and Microsoft CLR

• Very similar to Java – basic compiler generates byte
code files that are combined for execution

• Big implementation difference: basic CLR compiles
everything to native code when assemblies created –
no JIT interpreter + compiler for hot spots

• Other differences: various extensions for Microsoft-
specific environments

CSE 413 Spring 2021 38

Memory Management

• JVM includes instructions for creating objects
and arrays, but not deleting

• Garbage collection used to reclaim no-longer
needed storage (objects, arrays, classes, …)

• Strong type system means GC can have exact
information
– .class file includes type information
– GC can have exact knowledge of layouts since

these are internal to the JVM
• More details next hour

CSE 413 Spring 2021 39

Escape Analysis

• Another optimization based on observation that many
methods allocate local objects as temporaries

• Idea: Compiler tries to prove that no reference to a
locally allocated object can “escape”
– Not stored in a global variable or object
– Not passed as a parameter

CSE 413 Spring 2021 40

Using Escape Analysis

• If all references to an object are local, it doesn’t need
to be allocated on the heap in the usual manner
– Can allocate storage for it in local stack frame

• Essentially zero cost
– Still need to preserve the semantics of new,

constructor, etc.

CSE 413 Spring 2021 41

Exception Handling

• Goal: should have zero cost if no exceptions are
thrown
– Otherwise programmers will subvert exception

handling with the excuse of “performance”
• Corollary: cannot execute any exception handling

code on entry/exit from individual methods or try
blocks

CSE 413 Spring 2021 42

Implementing Exception Handling

• Idea: Original compiler generates table of
exception handler information in the .class file
– Entries include start and end of section of code

array protected by this handler; argument type
– Order of entries is significant

• When exception is thrown, JVM searches
exception table for first matching argument
type that has a pc range that includes the
current execution location

CSE 413 Spring 2021 43

Summary

• That’s the overview – many more details,
obviously, if you want to implement a JVM

• Primary reference: Java Virtual Machine
Specification. Available online:
https://docs.oracle.com/javase/specs/

• Many additional research papers & studies
all over the web and in conference
proceedings

CSE 413 Spring 2021 44

