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Program Memory

• Typically divided into 3 regions:
– Global / Static: fixed-size at compile time; exists 

throughout program lifetime
– Stack / Automatic: per function, automatically 

allocated and released (local variables)
– Heap: Explicitly allocated by programmer 

(malloc/new/cons)
• Need to recover / recycle storage for reuse when no 

longer needed
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Manual Heap Management

• Programmer calls free/delete when done with 
storage

• Pro
– Cheap
– Precise

• Con
– How do we enumerate the ways?  the pain?
– Buggy, huge debugging costs, …
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Conventional Heap Storage
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...
char* s = (char*) malloc(50);
...
free(s);

C Runtime Heap Memory

• Developer must remember to free memory when no longer required
• Eventual fragmentation => slow to malloc, slow to free

In Use



Heap Storage Fragmentation
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C Runtime Heap Memory

In Use

• malloc: walk the freelist to find a slot big enough for current request
• free: adjust freelist; collapse contiguous freespace
• fragmentation: plenty free chunks but none big enough for request
• cannot compact the used space - may contain pointers; may be pointed-at



Bugs
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• Forget to free => eventually run out of memory
• called a "memory leak”

• Call free, but continue to use!
• called "use-after-free", or "dangling pointer"
• memory corruption - wrong answers; crash if lucky!
• major source of security issues
• detect via "pool poisoning"

2 pointers

free via 1

free malloc; 
corruption!



Reference Counting

• Associate a count with each piece of dynamic 
data: how many pointers (references) exist 
pointing to this data
– Increment when new pointer value is created
– Decrement when pointer changed or deleted

• If reference count is decremented to 0, delete 
object 

CSE 413 Spring 2021 8



Reference Counting Evaluation

• Pro
– Fairly simple to implement
– Precise discovery of when object is free

• Con
– Expensive relative to cheap pointer operations
– Fails in the presence of cycles

• Partial workaround: weak pointers/references – “pointers” that 
are not included in reference counts.  Requires programming 
discipline to avoid memory leaks or accidental deallocation

• Still, useful (and used) for resource allocation like file 
systems where overhead is low compared to other 
operations and when we have a guarantee of no cycles
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Garbage Collection

• Automatically reclaim heap memory no longer 
in use by the program
– Simplify programming
– Better modularity, concurrency
– Avoids huge problems with dangling pointers
– Almost required for type safety
– But not a panacea – still need to watch for stale 

pointers, GC’s version of “memory leaks”
• i.e., pointers in live data to no-longer-used data
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Garbage Collection
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next

next

Allocate an object; fast!

next

Allocate more objects; 
and one more, please?



Garbage Collection
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Allocate another object

next

next
"roots"

Trace reachable objects

next

"roots"

Compact unreachables;
update all pointers

GC does not find garbage: it finds live objects and ignores all other memory



Heap Characteristics

• Most objects are small (< 128 bytes)
• Object-oriented and functional code allocates 

a huge number of short-lived objects
• Want allocation, recycling to be fast and low 

overhead
– Serious engineering required
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Allocation

• Usually multiple free lists organized by size for 
small objects (8, 16, 24, 32, … depends on 
alignment); additional list for large blocks
– Regular malloc does exactly the same

• Allocation
– Grab a free object from the right free list
– No more memory of the right size triggers a 

collection
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What is Garbage?

• An object is live if it is still in use
• GC needs to be conservative
– OK to keep memory no longer in use
– Not ok to reclaim something that is live

• An object is garbage if it is not live
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Reachability

• Root set : the set of global and local (stack + 
register) variables visible to active procedures

• Heap objects are reachable if:
– They are directly accessible from the root set
– They are accessible from another reachable heap 

object (pointers/references)
• Liveness implies reachability (conservative 

approximation)
• Not reachable implies garbage
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Tracing Collectors

• Mark the objects reachable from the root set, 
then perform a transitive closure to find all 
reachable objects

• All unmarked objects are dead and can be 
reclaimed

• Various algorithms: mark-sweep, copying, 
generational…
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Mark-Sweep Collection

• Mark phase – find the live objects
– Transitive closure from root set marking all live 

objects

• Sweep phase
– Sweep memory for unmarked objects and return 

to appropriate free list(s)
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GC Start

root

root
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GC Mark Phase

root

root

Unreachable

Reachable



CSE 413 Spring 2021 21

GC Sweep Phase

root

root

Reachable

With memory free, now allocate space for object that provoked the GC



Reachability

• Compiler produces:
– A stack-map at GC safe points
• Stack map: enumerate global variables, stack variables, 

live registers (tricky stuff! Why?)
• GC safe points: new(), method entry, method exit, back 

edges (thread switch points)
– Stop all threads at one of their GC safe points and then ok to 

do a collection

– Type information blocks
• Identifies reference fields in objects (to trace the heap)
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Mark-Sweep Evaluation

• Pro
– Space efficiency
– Incremental object reclamation

• Con
– Relatively slower allocation time (free lists vs. “next 

chunk of heap”)
– Can have poor locality of objects allocated at around 

the same time
– Redundant work rescanning long-lived objects
– “Stop the world I want to collect”
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Semispace Copying Collector

• Idea: Divide memory in half
– Storage allocated from one half of memory
– When full, copy live objects from old half (“from 

space”) to unused half (“to space”) & swap 
semispaces

• Fast allocation – next chunk of to-space
• Requires copying collection of entire heap 

when collection needed
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Semispace collection

• Same notion of root set and reachable as in 
mark-sweep collector

• Copy each object when first encountered
• Install forwarding pointers in from-space 

referring to new copy in to-space
• Transitive closure: follow pointers, copy, and 

update as it scans
• Reclaims entire “from space” in one shot
– Swap from- and to-space when copy done
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Semispace Copying Collector Evaluation

• Pro
– Fast allocation
– Locality of objects allocated at same time
– Locality of objects connected by pointers (can use 

depth-first or other strategies during the mark-copy 
phase)

• Con
– Wastes half of (virtual?) memory

• Other copying/compacting collectors solve some of this
• Be careful with VM – don’t want compacting to thrash

– Redundant work rescanning long-lived objects
– “Stop the world I want to collect”
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Generational Collectors

• Generational hypothesis: young objects die 
more quickly than older ones (Lieberman & 
Hewitt ‘83, Ungar ‘84)

• Most pointers are from younger to older 
objects (Appel ‘89, Zorn ‘90)

• So, organize heap into young and old regions, 
collect young space more often
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Generational Collector

• Divide heap into two spaces: young, old
• Allocate new objects in young space
• When young space fills up, collect it and copy 

surviving objects to old space
– Engineering: use write barriers to avoid having to scan 

all of old space on quick collections – most pointers 
that cross the boundary are from young objects to old

– Refinement: require objects to survive at least a few 
collections before copying

• When old space fills, collect both
• Often use multiple generations, not just two
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GC Tradeoffs

• Performance
– Mark-sweep often faster than semispace
– Generational better than both

• Mutator (i.e., user program) performance
– Semispace is often fastest
– Generational is better than mark-sweep

• Overall: generational is a good balance
• But: we still “stop the world” to collect
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Advanced GC and Research Areas

• Parallel/concurrent garbage collection
– Found in more production collectors these days
• Tricky stuff – can’t debug it into correctness – there be 

theorems here

• Locality issues
– Object collocation
– GC-time analysis

• Distributed GC
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Compiler & Runtime Support

• GC tightly coupled with safe runtime (e.g., 
Java, CLR, functional languages)
– Total knowledge of pointers (type safety)
– Tagged objects with type information
– Compiler maps for information
– Objects can be moved; forwarding pointers
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What about unsafe languages? (e.g., C/C++)

• Boehm/Weiser collector: GC still possible without
compiler/runtime cooperation(!)
– New versions of malloc (& free) + GC to manage heap
– If it looks like a pointer, it’s a pointer
– Mark-sweep only – GC doesn’t move anything
– Allows GC in C/C++ but constraints on pointer bit-

twiddling
– Surprisingly effective, particularly if program uses 

pointers as in a type-safe language (e.g., no pointer 
mangling, no (void*)int tricks, etc.)
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Boehm/Weiser Collector

• Useful for development/debugging
– Less burden on compiler/runtime implementor

• Used in various Java and .net prototypes, 
research implementations, production code if 
sufficiently effective

• Similar ideas for various tools to detect 
memory leaks, etc.
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A bit of perspective…

• Automatic GC has been around since LISP I in 
1958

• Ubiquitous in functional and object-oriented 
programming communities for decades

• Mainstream since Java(?) (mid-90s)
• Now conventional wisdom?
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