
CSE 413
Programming Languages &
Implementation

Hal Perkins
Spring 2021

Memory Management & Garbage Collection

CSE 413 Spring 2021 1

References

• Uniprocessor Garbage Collection Techniques
Wilson, IWMM 1992 (longish survey)

• The Garbage Collection Handbook
Jones, Hosking, Moss, 2012 (book)

• Earlier version of this lecture by Vijay Menon,
CSE 501, Sp09; Jim Hogg, CSE 401/M501 Sp14

CSE 413 Spring 2021 2

Program Memory

• Typically divided into 3 regions:
– Global / Static: fixed-size at compile time; exists

throughout program lifetime
– Stack / Automatic: per function, automatically

allocated and released (local variables)
– Heap: Explicitly allocated by programmer

(malloc/new/cons)
• Need to recover / recycle storage for reuse when no

longer needed

CSE 413 Spring 2021 3

Manual Heap Management

• Programmer calls free/delete when done with
storage

• Pro
– Cheap
– Precise

• Con
– How do we enumerate the ways? the pain?
– Buggy, huge debugging costs, …

CSE 413 Spring 2021 4

Conventional Heap Storage

CSE 413 Spring 2021 5

...
char* s = (char*) malloc(50);
...
free(s);

C Runtime Heap Memory

• Developer must remember to free memory when no longer required
• Eventual fragmentation => slow to malloc, slow to free

In Use

Heap Storage Fragmentation

CSE 413 Spring 2021 6

C Runtime Heap Memory

In Use

• malloc: walk the freelist to find a slot big enough for current request
• free: adjust freelist; collapse contiguous freespace
• fragmentation: plenty free chunks but none big enough for request
• cannot compact the used space - may contain pointers; may be pointed-at

Bugs

CSE 413 Spring 2021 7

• Forget to free => eventually run out of memory
• called a "memory leak”

• Call free, but continue to use!
• called "use-after-free", or "dangling pointer"
• memory corruption - wrong answers; crash if lucky!
• major source of security issues
• detect via "pool poisoning"

2 pointers

free via 1

free malloc;
corruption!

Reference Counting

• Associate a count with each piece of dynamic
data: how many pointers (references) exist
pointing to this data
– Increment when new pointer value is created
– Decrement when pointer changed or deleted

• If reference count is decremented to 0, delete
object

CSE 413 Spring 2021 8

Reference Counting Evaluation

• Pro
– Fairly simple to implement
– Precise discovery of when object is free

• Con
– Expensive relative to cheap pointer operations
– Fails in the presence of cycles

• Partial workaround: weak pointers/references – “pointers” that
are not included in reference counts. Requires programming
discipline to avoid memory leaks or accidental deallocation

• Still, useful (and used) for resource allocation like file
systems where overhead is low compared to other
operations and when we have a guarantee of no cycles

CSE 413 Spring 2021 9

Garbage Collection

• Automatically reclaim heap memory no longer
in use by the program
– Simplify programming
– Better modularity, concurrency
– Avoids huge problems with dangling pointers
– Almost required for type safety
– But not a panacea – still need to watch for stale

pointers, GC’s version of “memory leaks”
• i.e., pointers in live data to no-longer-used data

CSE 413 Spring 2021 10

Garbage Collection

CSE 413 Spring 2021 11

next

next

Allocate an object; fast!

next

Allocate more objects;
and one more, please?

Garbage Collection

CSE 413 Spring 2021 12

Allocate another object

next

next
"roots"

Trace reachable objects

next

"roots"

Compact unreachables;
update all pointers

GC does not find garbage: it finds live objects and ignores all other memory

Heap Characteristics

• Most objects are small (< 128 bytes)
• Object-oriented and functional code allocates

a huge number of short-lived objects
• Want allocation, recycling to be fast and low

overhead
– Serious engineering required

CSE 413 Spring 2021 13

Allocation

• Usually multiple free lists organized by size for
small objects (8, 16, 24, 32, … depends on
alignment); additional list for large blocks
– Regular malloc does exactly the same

• Allocation
– Grab a free object from the right free list
– No more memory of the right size triggers a

collection

CSE 413 Spring 2021 14

What is Garbage?

• An object is live if it is still in use
• GC needs to be conservative
– OK to keep memory no longer in use
– Not ok to reclaim something that is live

• An object is garbage if it is not live

CSE 413 Spring 2021 15

Reachability

• Root set : the set of global and local (stack +
register) variables visible to active procedures

• Heap objects are reachable if:
– They are directly accessible from the root set
– They are accessible from another reachable heap

object (pointers/references)
• Liveness implies reachability (conservative

approximation)
• Not reachable implies garbage

CSE 413 Spring 2021 16

Tracing Collectors

• Mark the objects reachable from the root set,
then perform a transitive closure to find all
reachable objects

• All unmarked objects are dead and can be
reclaimed

• Various algorithms: mark-sweep, copying,
generational…

CSE 413 Spring 2021 17

Mark-Sweep Collection

• Mark phase – find the live objects
– Transitive closure from root set marking all live

objects

• Sweep phase
– Sweep memory for unmarked objects and return

to appropriate free list(s)

CSE 413 Spring 2021 18

CSE 413 Spring 2021 19

GC Start

root

root

CSE 413 Spring 2021 20

GC Mark Phase

root

root

Unreachable

Reachable

CSE 413 Spring 2021 21

GC Sweep Phase

root

root

Reachable

With memory free, now allocate space for object that provoked the GC

Reachability

• Compiler produces:
– A stack-map at GC safe points
• Stack map: enumerate global variables, stack variables,

live registers (tricky stuff! Why?)
• GC safe points: new(), method entry, method exit, back

edges (thread switch points)
– Stop all threads at one of their GC safe points and then ok to

do a collection

– Type information blocks
• Identifies reference fields in objects (to trace the heap)

CSE 413 Spring 2021 22

Mark-Sweep Evaluation

• Pro
– Space efficiency
– Incremental object reclamation

• Con
– Relatively slower allocation time (free lists vs. “next

chunk of heap”)
– Can have poor locality of objects allocated at around

the same time
– Redundant work rescanning long-lived objects
– “Stop the world I want to collect”

CSE 413 Spring 2021 23

Semispace Copying Collector

• Idea: Divide memory in half
– Storage allocated from one half of memory
– When full, copy live objects from old half (“from

space”) to unused half (“to space”) & swap
semispaces

• Fast allocation – next chunk of to-space
• Requires copying collection of entire heap

when collection needed

CSE 413 Spring 2021 24

Semispace collection

• Same notion of root set and reachable as in
mark-sweep collector

• Copy each object when first encountered
• Install forwarding pointers in from-space

referring to new copy in to-space
• Transitive closure: follow pointers, copy, and

update as it scans
• Reclaims entire “from space” in one shot
– Swap from- and to-space when copy done

CSE 413 Spring 2021 25

Semispace Copying Collector Evaluation

• Pro
– Fast allocation
– Locality of objects allocated at same time
– Locality of objects connected by pointers (can use

depth-first or other strategies during the mark-copy
phase)

• Con
– Wastes half of (virtual?) memory

• Other copying/compacting collectors solve some of this
• Be careful with VM – don’t want compacting to thrash

– Redundant work rescanning long-lived objects
– “Stop the world I want to collect”

CSE 413 Spring 2021 26

Generational Collectors

• Generational hypothesis: young objects die
more quickly than older ones (Lieberman &
Hewitt ‘83, Ungar ‘84)

• Most pointers are from younger to older
objects (Appel ‘89, Zorn ‘90)

• So, organize heap into young and old regions,
collect young space more often

CSE 413 Spring 2021 27

Generational Collector

• Divide heap into two spaces: young, old
• Allocate new objects in young space
• When young space fills up, collect it and copy

surviving objects to old space
– Engineering: use write barriers to avoid having to scan

all of old space on quick collections – most pointers
that cross the boundary are from young objects to old

– Refinement: require objects to survive at least a few
collections before copying

• When old space fills, collect both
• Often use multiple generations, not just two

CSE 413 Spring 2021 28

GC Tradeoffs

• Performance
– Mark-sweep often faster than semispace
– Generational better than both

• Mutator (i.e., user program) performance
– Semispace is often fastest
– Generational is better than mark-sweep

• Overall: generational is a good balance
• But: we still “stop the world” to collect

CSE 413 Spring 2021 29

Advanced GC and Research Areas

• Parallel/concurrent garbage collection
– Found in more production collectors these days
• Tricky stuff – can’t debug it into correctness – there be

theorems here

• Locality issues
– Object collocation
– GC-time analysis

• Distributed GC

CSE 413 Spring 2021 30

Compiler & Runtime Support

• GC tightly coupled with safe runtime (e.g.,
Java, CLR, functional languages)
– Total knowledge of pointers (type safety)
– Tagged objects with type information
– Compiler maps for information
– Objects can be moved; forwarding pointers

CSE 413 Spring 2021 31

What about unsafe languages? (e.g., C/C++)

• Boehm/Weiser collector: GC still possible without
compiler/runtime cooperation(!)
– New versions of malloc (& free) + GC to manage heap
– If it looks like a pointer, it’s a pointer
– Mark-sweep only – GC doesn’t move anything
– Allows GC in C/C++ but constraints on pointer bit-

twiddling
– Surprisingly effective, particularly if program uses

pointers as in a type-safe language (e.g., no pointer
mangling, no (void*)int tricks, etc.)

CSE 413 Spring 2021 32

Boehm/Weiser Collector

• Useful for development/debugging
– Less burden on compiler/runtime implementor

• Used in various Java and .net prototypes,
research implementations, production code if
sufficiently effective

• Similar ideas for various tools to detect
memory leaks, etc.

CSE 413 Spring 2021 33

A bit of perspective…

• Automatic GC has been around since LISP I in
1958

• Ubiquitous in functional and object-oriented
programming communities for decades

• Mainstream since Java(?) (mid-90s)
• Now conventional wisdom?

CSE 413 Spring 2021 34

