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Welcome – please set up your Zoom 

session.  We’ll start the actual class 

meeting at 10:30 am pdt



Todayʼs Outline

• Administrative info
• Overview of the course
• Introduction to Racket
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But first…
• It’s all virtual, all the time this quarter

• Core infrastructure is same as usual (Gradescope, web, 
discussion board, canvas)

• But lectures, office hours – Zoom

• Most important: stay healthy, wear masks, keep your 
(physical) distance from others, help others

• (Just a few more months and we could be past this!)
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Virtual lectures
• Classes will be mostly lectures (see links on canvas) –

should work ok, but let us know what we can do better!

• Conventions (from page on our web site)
– Lecture will be recorded and archived – available to class only
– If you have a question, type “hand” or “question” in Zoom chat 

window
– If needed, indicate if we should pause recording while you’re 

talking
– Please keep your microphone muted during class unless you’re 

using it for a question or during breakout room discussions
– Lecture slides will be posted in advance along with “virtual 

handouts” for some lectures
– Demo transcripts and code will be added to the calendars after 

class
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Virtual office hours

• Also Zoom, will be added to canvas calendar in 
the next few days; combination of group 
gatherings, breakouts, waiting rooms – all as 
needed

• Not recorded or archived

• You will be bombarded with email as we add 
these things to Canvas/Zoom. Feel free to file 
away for future reference or ignore.  J
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Stay in touch – speak up…

• This is a strange world we’re in and there’s a lot of 
stress for many people

• Please speak up if things aren’t (or are!) going well
– We can often help if we know about things, so stay in 

touch with TAs, instructor, advising, friends and peers, …

• We’re all in this together but not all in the same way, 
so please show understanding and compassion for 
each other and help when you can – both in and 
outside of class
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Who, Where & When

• Instructor: Hal Perkins 
(perkins@cs.washington.edu)

• TAs: Smart Chang, Xinyue Chen, Talin Hans, 
Shauray Jain, Paul Karmel, Mike Nao, Wei Qiang

• Office hours: will set up and add to zoom 
calendar shortly

• Lectures: MWF 10:30-11:20, zooooommm!
• No sections, but would people be interested in 

some sort of (semi-)formal work sessions?
– What if we attach 1 credit hour to it?
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Course Web

• All info is on the CSE 413 web:
www.cs.uw.edu/413

• Look there for schedules, contact information, 
lecture materials, assignments, links to 
discussion boards and mailing lists, etc.

• Canvas used for zoom links and (eventually) 
final gradebook only
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ed discussion board

• Primary communications channel to stay in 
touch outside of class
– Public discussions – join in, help out
– Private messages for things like help with specific 

coding problems or other things that shouldn’t be 
posted publically

– Occasional broadcast messages from course staff
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cse413-staff[at]cs mailing list

• Mailing list to reach course staff with things 
not appropriate for ed
– Admin issues or questions that require followup

beyond a quick answer on the discussion board
• (But we’ll use Gradescope for routine regrade requests)

– Personal situations (illness, emergencies, etc.) 
where we can help out

• Please prefer this to messages to individual 
staff if you can – easier to route to right 
person to handle them
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Course Computing

• All software is freely available and can be 
installed anywhere you want
– Links on the course web

• If you have trouble getting a working setup 
please contact the course staff to see what 
might be possible

UW CSE 413 Spring 2021 11



Workload and Grading

• Not going to attempt a regular high-stakes midterm 
and final exam given the remote world.

• Grading will be based on homework assignments
– Weights will differ somewhat depending on difficulty
– Assignments will be a mix of shorter written exercises and 

shorter/longer programming projects

• Exploring ways to supplement this with short quizzes 
or other ways to help with review/mastery
– Will announce well in advance if we do this
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Deadlines & Late Policy

• Assignments submitted online, graded, and 
feedback returned via GradeScope
– Due @11pm
– Most due Tuesday evenings, a few other nights

• Late policy: 4 “late days” for entire quarter
– At most 2 on any single assignment
– Used only in integer, 24-hour units
– Don’t use them early!! Don’t “plan” on using them!
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Unusual situations

• Unusual things happen – remember to speak up.

• We will do our best to work with you, but you 
need to contact course staff or the instructor well 
in advance (unless not possible because of a true 
emergency)

• Please reach out early – don’t let things fester 
until it’s late and much harder to fix
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Academic (Mis-)Conduct
• You are expected to do your own work

– Exceptions, if any, will be clearly announced
• Things that are academic misconduct:

– Sharing solutions, doing work for others, accepting work from 
others including have someone “walk you through” the details 

– Copying solutions found on the web
– Consulting solutions from previous offerings of this course
– etc.  Will not attempt to provide exact legislation and invite  

attempts to weasel around the rules
• Integrity is a fundamental principle in the academic world 

(and elsewhere) – we and your classmates trust you; don’t 
abuse that trust

• You must know the course policy– Read It! (on the web)
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Working With Colleagues

• “Do your own work” does not mean “lock 
yourself in a windowless room”.  Learning 
from each other and from the course staff is a 
good thing; sharing ideas and talking is a good 
thing; finding useful resources is a good thing

– Representing something that you didn’t do as 
your own is not.
• OK?
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Reading

• No required $$$ textbook – good free resources 
available

• First several weeks: “Functional Programming / 
Racket” page on course web:
– Course notes!  (also linked to calendar – read them!)
– Racket documentation
– How to Design Programs 

• Intro textbook using Scheme
– Structure and Interpretation of Computer Programs 

• Fantastic, classic intro CS book from MIT.  Some good 
examples here that are directly useful
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Tentative Course Schedule

• Week 1: Functional Programming/Racket
• Week 2: Functional Programming/Racket
• Week 3: Functional Programming/Racket
• Week 4: FP wrapup, environments, lazy eval
• Weeks 5-6: Object-oriented programming and 

Ruby; scripting languages
• Weeks 7-9: Language implementation, compilers 

and interpreters
• Week 10: garbage collection; special topics
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Work to do!

• Download Racket and install

• Run DrRacket and verify facts like 1+1=2
– Which, in racket is (eqv? (+ 1 1) 2) J

• Learn your way around the course web and 
linked resources
– Especially: read the Racket lecture notes that go 

with the first classes
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Now where were we?

• Programming Languages

• Language Implementation
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Why Functional Programming?

• Focus on “functional programming” because of 
simplicity, power, elegance

• Stretch our brains – different ways of thinking about 
programming and computation
– Often a good way to think even if stuck with C/Java/…

• Now mainstream – lambdas/closures in Javascript, C#; 
modern Java, C++; functional programming is the 
“secret sauce” in Google’s infrastructure; …

• Let go of Java/C/… for now
– Easier to approach functional prog. on its own terms
– We’ll make connections to other languages as we go
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Scheme / Racket

• Scheme:  The classic functional language
– Enormously influential in education, research

• Racket
– Modern Scheme dialect with some changes/extras
– DrRacket programming environment (was DrScheme

for many years)

• Expect your instructor to say “Scheme” 
accidentally at times
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Functional Programming

• Programming consists of defining and evaluating 
functions

• No side effects (assignment)
– An expression will always yield the same value when 

evaluated (referential transparency)
• No loops (use recursion instead)

• Racket/Scheme/Lisp include assignment and 
loops but they are not needed and we won’t use
– i.e., you will “lose points”, as the saying goes J
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Primitive Expressions

• constants
– Integer  
– rational 
– real
– boolean

• variable names (symbols)
– Names can contain almost any character except white 

space and parentheses
– Stick with simple names like sumsq, x, iter, same?, ...
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Compound Expressions

• Either a combination or a special form
1. Combination: (operator op1 op2 …)
– there are a lot of pre-defined operators
– We can define our own operators

2. Special form
– “keywords” in the language
– eg, define, if, cond
– have non-standard evaluation rules (more later)
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Combinations

• (operator operand1 operand2 …)

• this is prefix notation, the operator comes first
• a combination always denotes a procedure 

application
• the operator is a symbol or an expression, the 

applied procedure is the associated value
– +, -, abs, new-function
– characters like * and + are not special; if they do not 

stand alone then they are part of some name
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Evaluating Combinations

• To evaluate a combination
– Evaluate the subexpressions of the combination
• All of them, including the operator – it’s an expression 

too!

– Apply the procedure that is the value of the 
leftmost subexpression (the operator) to the 
arguments that are the values of the other 
subexpresions (the operands)

• Examples (demo)
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Evaluating Special Forms

• Special forms have unique evaluation rules
• (define x 3) is an example of a special 

form; it is not a combination
– the evaluation rule for a simple define is "associate 

the given name with the given value” or, more 
concisely, “bind the value to the name”

– All special forms do something different from simple 
evaluation of a value from (evaluated) operands

• There are a few more special forms, but there are 
surprisingly few compared to other languages

UW CSE 413 Spring 2021 31



Procedures
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Recall the define special form

• Special forms have unique evaluation rules
• (define x 3) is an example of a special 

form; it is not a combination
– the evaluation rule for a simple define is 

“associate the given name with the given value”, 
i.e., “bind the value to the name”
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Bind a value to a variable

• (define ánameñ áexprñ)
– define - special form
– name - name that the value of expr is bound to
– expr - expression that is evaluated to give the 

value for name

• define is valid only at the top level of a 
<program> and at the beginning of a <body>
– We will only use it at top-level
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Bind a procedure value (!) to a name

• (define (ánameñ áparamsñ) ábodyñ)
– define - special form
– name - the name that the procedure is bound to
– formal parameters - names used within the body 

of procedure, bound when procedure is called
– body - expression (or sequence of expressions) 

that will be evaluated when the procedure is 
called

– The result of the last expression in the body will 
be returned as the result of the procedure call
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Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)

(* pi (* r r)))

(define (area-of-ring outer inner)

(- (area-of-disk outer)

(area-of-disk inner)))
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Defined procedures are “first class”

• Procedures that we define are used exactly 
the same way as the primitive procedures 
provided in Racket
– names of built-in procedures are not special; they 

are simply names that have been pre-defined
– you can't tell whether a name stands for a 

primitive (built-in) procedure or one we’ve 
defined by looking at the name or how it is used

– [Disclaimer: This is almost but not always strictly 
true in Racket]
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Booleans 

• One type of data object is boolean
#t (true) or #f (false)

• We can use these explicitly or by calculating 
them in expressions that yield boolean values

• An expression that yields a true or false value 
is called a predicate
#t =>
(< 5 5) => 
(> pi 0) => 
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Conditional expressions

• As in all languages, we need to be able to 
make decisions based on values 

• In Racket it’s not “if this is true, do that else do 
something else”

• Instead, we have conditional expressions.  The 
value of a conditional expression is the value 
of one of its subexpressions – which one 
depends on the value(s) of other expression(s)
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Special form: if

(if áe1ñ áe2ñ áe3ñ)

Evaluation:
• Evaluate áe1ñ
• If true, evaluate áe2ñ to get the if value 
• If false, evaluate áe3ñ to get the if value

• Example: (if (< x y) x y)
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Special form: cond

(cond áclause1ñ áclause2ñ … áclausenñ)

• each clause has the form
[ápredicateñ áexpressionñ]

• (Racket allows us to use[ ] and ( ) interchangeably, which can 
make things more readable)

• the last clause can be
[else áexpressionñ]
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Example: sign.scm

; return the sign of x: -1, 0, 1

(define (sign x)

(cond

[(< x 0) -1]

[(= x 0) 0]

[(> x 0) +1]))
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Logical composition

(and áe1ñ áe2ñ... áenñ)
(or áe1ñ áe2ñ... áenñ)
(not áeñ)

• Racket evaluates the expressions ei one at a 
time in left-to-right order until it determines 
the correct value
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in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)

(and (<= lo val)

(<= val hi)))
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To Be Continued…

• For more information about Racket/Scheme, 
refer to notes on the Racket pages of the 
course web & reference material linked there

• More demos/examples in the next several 
lectures, very little PowerPoint, if any
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