
CSE 413: Programming Languages
and their Implementation

Hal Perkins
Spring 2021

UW CSE 413 Spring 2021 1

Welcome – please set up your Zoom

session. We’ll start the actual class

meeting at 10:30 am pdt

Todayʼs Outline

• Administrative info
• Overview of the course
• Introduction to Racket

UW CSE 413 Spring 2021 2

But first…
• It’s all virtual, all the time this quarter

• Core infrastructure is same as usual (Gradescope, web,
discussion board, canvas)

• But lectures, office hours – Zoom

• Most important: stay healthy, wear masks, keep your
(physical) distance from others, help others

• (Just a few more months and we could be past this!)

UW CSE 413 Spring 2021 A-3

Virtual lectures
• Classes will be mostly lectures (see links on canvas) –

should work ok, but let us know what we can do better!

• Conventions (from page on our web site)
– Lecture will be recorded and archived – available to class only
– If you have a question, type “hand” or “question” in Zoom chat

window
– If needed, indicate if we should pause recording while you’re

talking
– Please keep your microphone muted during class unless you’re

using it for a question or during breakout room discussions
– Lecture slides will be posted in advance along with “virtual

handouts” for some lectures
– Demo transcripts and code will be added to the calendars after

class
UW CSE 413 Spring 2021 A-4

Virtual office hours

• Also Zoom, will be added to canvas calendar in
the next few days; combination of group
gatherings, breakouts, waiting rooms – all as
needed

• Not recorded or archived

• You will be bombarded with email as we add
these things to Canvas/Zoom. Feel free to file
away for future reference or ignore. J

UW CSE 413 Spring 2021 A-5

Stay in touch – speak up…

• This is a strange world we’re in and there’s a lot of
stress for many people

• Please speak up if things aren’t (or are!) going well
– We can often help if we know about things, so stay in

touch with TAs, instructor, advising, friends and peers, …

• We’re all in this together but not all in the same way,
so please show understanding and compassion for
each other and help when you can – both in and
outside of class

UW CSE 413 Spring 2021 A-6

Who, Where & When

• Instructor: Hal Perkins
(perkins@cs.washington.edu)

• TAs: Smart Chang, Xinyue Chen, Talin Hans,
Shauray Jain, Paul Karmel, Mike Nao, Wei Qiang

• Office hours: will set up and add to zoom
calendar shortly

• Lectures: MWF 10:30-11:20, zooooommm!
• No sections, but would people be interested in

some sort of (semi-)formal work sessions?
– What if we attach 1 credit hour to it?

UW CSE 413 Spring 2021 7

Course Web

• All info is on the CSE 413 web:
www.cs.uw.edu/413

• Look there for schedules, contact information,
lecture materials, assignments, links to
discussion boards and mailing lists, etc.

• Canvas used for zoom links and (eventually)
final gradebook only

UW CSE 413 Spring 2021 8

ed discussion board

• Primary communications channel to stay in
touch outside of class
– Public discussions – join in, help out
– Private messages for things like help with specific

coding problems or other things that shouldn’t be
posted publically

– Occasional broadcast messages from course staff

UW CSE 413 Spring 2021 A-9

cse413-staff[at]cs mailing list

• Mailing list to reach course staff with things
not appropriate for ed
– Admin issues or questions that require followup

beyond a quick answer on the discussion board
• (But we’ll use Gradescope for routine regrade requests)

– Personal situations (illness, emergencies, etc.)
where we can help out

• Please prefer this to messages to individual
staff if you can – easier to route to right
person to handle them

UW CSE 413 Spring 2021 10

Course Computing

• All software is freely available and can be
installed anywhere you want
– Links on the course web

• If you have trouble getting a working setup
please contact the course staff to see what
might be possible

UW CSE 413 Spring 2021 11

Workload and Grading

• Not going to attempt a regular high-stakes midterm
and final exam given the remote world.

• Grading will be based on homework assignments
– Weights will differ somewhat depending on difficulty
– Assignments will be a mix of shorter written exercises and

shorter/longer programming projects

• Exploring ways to supplement this with short quizzes
or other ways to help with review/mastery
– Will announce well in advance if we do this

UW CSE 413 Spring 2021 13

Deadlines & Late Policy

• Assignments submitted online, graded, and
feedback returned via GradeScope
– Due @11pm
– Most due Tuesday evenings, a few other nights

• Late policy: 4 “late days” for entire quarter
– At most 2 on any single assignment
– Used only in integer, 24-hour units
– Don’t use them early!! Don’t “plan” on using them!

UW CSE 413 Spring 2021 14

Unusual situations

• Unusual things happen – remember to speak up.

• We will do our best to work with you, but you
need to contact course staff or the instructor well
in advance (unless not possible because of a true
emergency)

• Please reach out early – don’t let things fester
until it’s late and much harder to fix

UW CSE 413 Spring 2021 A-15

Academic (Mis-)Conduct
• You are expected to do your own work

– Exceptions, if any, will be clearly announced
• Things that are academic misconduct:

– Sharing solutions, doing work for others, accepting work from
others including have someone “walk you through” the details

– Copying solutions found on the web
– Consulting solutions from previous offerings of this course
– etc. Will not attempt to provide exact legislation and invite

attempts to weasel around the rules
• Integrity is a fundamental principle in the academic world

(and elsewhere) – we and your classmates trust you; don’t
abuse that trust

• You must know the course policy– Read It! (on the web)

UW CSE 413 Spring 2021 16

Working With Colleagues

• “Do your own work” does not mean “lock
yourself in a windowless room”. Learning
from each other and from the course staff is a
good thing; sharing ideas and talking is a good
thing; finding useful resources is a good thing

– Representing something that you didn’t do as
your own is not.
• OK?

UW CSE 413 Spring 2021 A-17

Reading

• No required $$$ textbook – good free resources
available

• First several weeks: “Functional Programming /
Racket” page on course web:
– Course notes! (also linked to calendar – read them!)
– Racket documentation
– How to Design Programs

• Intro textbook using Scheme
– Structure and Interpretation of Computer Programs

• Fantastic, classic intro CS book from MIT. Some good
examples here that are directly useful

UW CSE 413 Spring 2021 20

Tentative Course Schedule

• Week 1: Functional Programming/Racket
• Week 2: Functional Programming/Racket
• Week 3: Functional Programming/Racket
• Week 4: FP wrapup, environments, lazy eval
• Weeks 5-6: Object-oriented programming and

Ruby; scripting languages
• Weeks 7-9: Language implementation, compilers

and interpreters
• Week 10: garbage collection; special topics

UW CSE 413 Spring 2021 21

Work to do!

• Download Racket and install

• Run DrRacket and verify facts like 1+1=2
– Which, in racket is (eqv? (+ 1 1) 2) J

• Learn your way around the course web and
linked resources
– Especially: read the Racket lecture notes that go

with the first classes

UW CSE 413 Spring 2021 22

Now where were we?

• Programming Languages

• Language Implementation

UW CSE 413 Spring 2021 23

Why Functional Programming?

• Focus on “functional programming” because of
simplicity, power, elegance

• Stretch our brains – different ways of thinking about
programming and computation
– Often a good way to think even if stuck with C/Java/…

• Now mainstream – lambdas/closures in Javascript, C#;
modern Java, C++; functional programming is the
“secret sauce” in Google’s infrastructure; …

• Let go of Java/C/… for now
– Easier to approach functional prog. on its own terms
– We’ll make connections to other languages as we go

UW CSE 413 Spring 2021 24

Scheme / Racket

• Scheme: The classic functional language
– Enormously influential in education, research

• Racket
– Modern Scheme dialect with some changes/extras
– DrRacket programming environment (was DrScheme

for many years)

• Expect your instructor to say “Scheme”
accidentally at times

UW CSE 413 Spring 2021 25

Functional Programming

• Programming consists of defining and evaluating
functions

• No side effects (assignment)
– An expression will always yield the same value when

evaluated (referential transparency)
• No loops (use recursion instead)

• Racket/Scheme/Lisp include assignment and
loops but they are not needed and we won’t use
– i.e., you will “lose points”, as the saying goes J

UW CSE 413 Spring 2021 26

Primitive Expressions

• constants
– Integer
– rational
– real
– boolean

• variable names (symbols)
– Names can contain almost any character except white

space and parentheses
– Stick with simple names like sumsq, x, iter, same?, ...

UW CSE 413 Spring 2021 27

Compound Expressions

• Either a combination or a special form
1. Combination: (operator op1 op2 …)
– there are a lot of pre-defined operators
– We can define our own operators

2. Special form
– “keywords” in the language
– eg, define, if, cond
– have non-standard evaluation rules (more later)

UW CSE 413 Spring 2021 28

Combinations

• (operator operand1 operand2 …)

• this is prefix notation, the operator comes first
• a combination always denotes a procedure

application
• the operator is a symbol or an expression, the

applied procedure is the associated value
– +, -, abs, new-function
– characters like * and + are not special; if they do not

stand alone then they are part of some name

UW CSE 413 Spring 2021 29

Evaluating Combinations

• To evaluate a combination
– Evaluate the subexpressions of the combination
• All of them, including the operator – it’s an expression

too!

– Apply the procedure that is the value of the
leftmost subexpression (the operator) to the
arguments that are the values of the other
subexpresions (the operands)

• Examples (demo)

UW CSE 413 Spring 2021 30

Evaluating Special Forms

• Special forms have unique evaluation rules
• (define x 3) is an example of a special

form; it is not a combination
– the evaluation rule for a simple define is "associate

the given name with the given value” or, more
concisely, “bind the value to the name”

– All special forms do something different from simple
evaluation of a value from (evaluated) operands

• There are a few more special forms, but there are
surprisingly few compared to other languages

UW CSE 413 Spring 2021 31

Procedures

UW CSE 413 Spring 2021 32

Recall the define special form

• Special forms have unique evaluation rules
• (define x 3) is an example of a special

form; it is not a combination
– the evaluation rule for a simple define is

“associate the given name with the given value”,
i.e., “bind the value to the name”

UW CSE 413 Spring 2021 33

Bind a value to a variable

• (define ánameñ áexprñ)
– define - special form
– name - name that the value of expr is bound to
– expr - expression that is evaluated to give the

value for name

• define is valid only at the top level of a
<program> and at the beginning of a <body>
– We will only use it at top-level

UW CSE 413 Spring 2021 34

Bind a procedure value (!) to a name

• (define (ánameñ áparamsñ) ábodyñ)
– define - special form
– name - the name that the procedure is bound to
– formal parameters - names used within the body

of procedure, bound when procedure is called
– body - expression (or sequence of expressions)

that will be evaluated when the procedure is
called

– The result of the last expression in the body will
be returned as the result of the procedure call

UW CSE 413 Spring 2021 35

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)

(* pi (* r r)))

(define (area-of-ring outer inner)

(- (area-of-disk outer)

(area-of-disk inner)))

UW CSE 413 Spring 2021 36

Defined procedures are “first class”

• Procedures that we define are used exactly
the same way as the primitive procedures
provided in Racket
– names of built-in procedures are not special; they

are simply names that have been pre-defined
– you can't tell whether a name stands for a

primitive (built-in) procedure or one we’ve
defined by looking at the name or how it is used

– [Disclaimer: This is almost but not always strictly
true in Racket]

UW CSE 413 Spring 2021 37

Booleans

• One type of data object is boolean
#t (true) or #f (false)

• We can use these explicitly or by calculating
them in expressions that yield boolean values

• An expression that yields a true or false value
is called a predicate
#t =>
(< 5 5) =>
(> pi 0) =>

UW CSE 413 Spring 2021 38

Conditional expressions

• As in all languages, we need to be able to
make decisions based on values

• In Racket it’s not “if this is true, do that else do
something else”

• Instead, we have conditional expressions. The
value of a conditional expression is the value
of one of its subexpressions – which one
depends on the value(s) of other expression(s)

UW CSE 413 Spring 2021 39

Special form: if

(if áe1ñ áe2ñ áe3ñ)

Evaluation:
• Evaluate áe1ñ
• If true, evaluate áe2ñ to get the if value
• If false, evaluate áe3ñ to get the if value

• Example: (if (< x y) x y)

UW CSE 413 Spring 2021 40

Special form: cond

(cond áclause1ñ áclause2ñ … áclausenñ)

• each clause has the form
[ápredicateñ áexpressionñ]

• (Racket allows us to use[] and () interchangeably, which can
make things more readable)

• the last clause can be
[else áexpressionñ]

UW CSE 413 Spring 2021 41

Example: sign.scm

; return the sign of x: -1, 0, 1

(define (sign x)

(cond

[(< x 0) -1]

[(= x 0) 0]

[(> x 0) +1]))

UW CSE 413 Spring 2021 42

Logical composition

(and áe1ñ áe2ñ... áenñ)
(or áe1ñ áe2ñ... áenñ)
(not áeñ)

• Racket evaluates the expressions ei one at a
time in left-to-right order until it determines
the correct value

UW CSE 413 Spring 2021 43

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)

(and (<= lo val)

(<= val hi)))

UW CSE 413 Spring 2021 44

To Be Continued…

• For more information about Racket/Scheme,
refer to notes on the Racket pages of the
course web & reference material linked there

• More demos/examples in the next several
lectures, very little PowerPoint, if any

UW CSE 413 Spring 2021 45

