
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Grammars, Scanners & Regular Expressions

1

Agenda

•  Overview of language recognizers
•  Basic concepts of formal grammars
•  Scanner Theory

–  Regular expressions
–  Finite automata (to recognize regular expressions)

•  Scanner Implementation

2

And the point is…

•  How do execute this?

int nPos = 0;
int k = 0;
while (k < length) {

 if (a[k] > 0) {
 nPos++;
 }

}

•  How do we understand what it means?

3

Compilers vs. Interpreters (review)

•  Interpreter
–  A program that reads a source program and

executes that program
•  Compiler

–  A program that translates a program from one
language (the source) to another (the target)

4

Interpreter

•  Interpreter
–  Execution engine
–  Program execution interleaved with analysis

 running = true;
 while (running) {
 analyze next statement;
 execute that statement;
 }

–  May involve repeated analysis of some statements
(loops, functions)

5

Compiler

•  Read and analyze entire program
•  Translate to semantically equivalent program in

another language
–  Presumably easier to execute or more efficient
–  Should “improve” the program in some fashion

•  Offline process
–  Tradeoff: compile time overhead (preprocessing

step) vs execution performance

6

Hybrid approaches

•  Well-known example: Java
–  Compile Java source to byte codes – Java Virtual

Machine language (.class files)
–  Execution

•  Interpret byte codes directly, or
•  Compile some or all byte codes to native code

–  Just-In-Time compiler (JIT) – detect hot spots &
compile on the fly to native code

•  Variation: .NET
–  Compilers generate MSIL
–  All IL compiled to native code before execution

7

Compiler/Interpreter Structure

•  First approximation
–  Front end: analysis

•  Read source program and understand its
structure and meaning

–  Back end: synthesis
•  Execute or generate equivalent target program

8

Source Target Front End Back End

Common Issues

•  Compilers and interpreters both must read the input –
a stream of characters – and “understand” it: analysis

w h i l e (k < l e n g t h) { <nl>
<tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; }
<nl> <tab> }

9

Programming Language Specs

•  Since the 1960s, the syntax of every significant
programming language has been specified by a
formal grammar
–  First done in 1959 with BNF (Backus-Naur Form

or Backus-Normal Form) used to specify the
syntax of ALGOL 60

–  Adapted from the linguistics community
(Chomsky)

10

Grammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

11

Context-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S> where
N a finite set of non-terminal symbols
Σ a finite set of terminal symbols
P a finite set of productions

A subset of N × (N ∪ Σ)*
S the start symbol, a distinguished element of N

If not specified otherwise, this is usually assumed
to be the non-terminal on the left of the first
production

12

Productions

•  The rules of a grammar are called productions
•  Rules contain

–  Nonterminal symbols: grammar variables (program,
statement, id, etc.)

–  Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, (, {,), }, …

•  Meaning of
 nonterminal ::= <sequence of terminals and nonterminals>

–  In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

•  Often, there are two or more productions for a single
nonterminal – can use either at different points in a derivation

13

Alternative Notations

•  There are several common notations for productions;
all mean the same thing

ifStmt ::= if (expr) stmt
ifStmt if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

14

Example Derivation

a = 1 ; if (a + 1) b = 2 ;

15

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Parsing

•  Parsing: reconstruct the derivation (syntactic
structure) of a program

•  In principle, a single recognizer could work directly
from the concrete, character-by-character grammar

•  In practice this is never done

16

Parsing & Scanning

•  In real compilers the recognizer is split into two
phases
–  Scanner: translate input characters to tokens

•  Also, report lexical errors like illegal characters
and illegal symbols

–  Parser: read token stream and reconstruct the
derivation

•  Typically a procedural interface – parser asks the
scanner for new tokens when needed

17

Scanner Parser source tokens

Scanner Example

•  Input text
// this statement does very little
if (x >= y) y = 42;

•  Token Stream

–  Tokens are atomic items, not character strings
–  Comments and whitespace are not tokens in most

programming languages

18

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Example

•  Token Stream Input

19

•  Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Separate the Scanner and Parser?

•  Simplicity & Separation of Concerns
–  Scanner hides details from parser (comments,

whitespace, etc.)
–  Parser is easier to build; has simpler input stream

(tokens)
•  Efficiency

–  Scanner can use simpler, faster design
•  (But still often consumes a surprising amount of

the compiler’s total execution time if you’re not
careful)

20

Tokens

•  Idea: we want a distinct token kind (lexical class) for
each distinct terminal symbol in the programming
language
–  Examine the grammar to find these

•  Some tokens may have attributes. Examples:
–  All integer constants are a single kind of token, but

the actual value (17, 42, …) will be an attribute
–  Identifier tokens carry a string with the id

21

Typical Programming Language Tokens

•  Operators & Punctuation
–  + - * / () { } [] ; : :: < <= == = != ! …
–  Each of these is a distinct lexical class

•  Keywords
–  if while for goto return switch void …
–  Each of these is also a distinct lexical class (not a string)

•  Identifiers
–  A single ID lexical class, but parameterized by actual id

•  Integer constants
–  A single INT lexical class, but parameterized by int value

•  Other constants, etc.

22

Principle of Longest Match

•  In most languages, the scanner should pick the
longest possible string to make up the next token if
there is a choice

•  Example
return iffy != todo;

should be recognized as 5 tokens

not more (i.e., not parts of words or identifiers, or !
and = as separate tokens)

23

RETURN ID(iffy) NEQ ID(todo) SCOLON

Formal Languages & Automata
Theory (in one slide)
•  Alphabet: a finite set of symbols
•  String: a finite, possibly empty sequence of symbols from

an alphabet
•  Language: a set, often infinite, of strings
•  Finite specifications of (possibly infinite) languages

–  Automaton – a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)

–  Grammar – a generator; a system for producing all
strings in the language (and no other strings)

•  A particular language may be specified by many different
grammars and automata

•  A grammar or automaton specifies only one language

24

Regular Expressions and FAs

•  The lexical grammar (structure) of most programming
languages can be specified with regular expressions
–  Aside: Difficulties with Fortran, some others

•  Tokens can be recognized by a deterministic finite
automaton
–  Can be either table-driven or built by hand based

on lexical grammar

25

Regular Expressions

•  Defined over some alphabet Σ
–  For programming languages, commonly ASCII or

Unicode
•  If re is a regular expression, L(re) is the language

(set of strings) generated by re

26

Fundamental REs

re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

27

∅

Operations on REs

re L(re) Notes
rs L(r)L(s) Concatenation
r | s L(r) L(s) Combination (union)
r* L(r)* 0 or more occurrences

(Kleene closure)

28

•  Precedence: * (highest), concatenation, | (lowest)
•  Parentheses can be used to group REs as needed

∪

Abbreviations

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

29

•  The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Typical examples:

Examples

re Meaning
+ single + character
! single ! character
= single = character
!= 2 character sequence
<= 2 character sequence
hogwash 7 character sequence

30

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

31

Abbreviations

•  Many systems allow abbreviations to make writing
and reading definitions easier

 name ::= re

–  Restriction: abbreviations may not be circular
(recursive) either directly or indirectly

(otherwise it would no longer be a regular
expression – would be a context-free grammar)

32

Example

•  Possible syntax for numeric constants

 digit ::= [0-9]
 digits ::= digit+
 number ::= digits (. digits)?
 ([eE] (+ | -)? digits) ?

33

Recognizing REs

•  Finite automata can be used to recognize strings
generated by regular expressions

•  Can build by hand or automatically
–  Not totally straightforward, but can be done

systematically
–  Tools like Lex, Flex, and JLex do this

automatically from a set of REs read as input
–  Even if you don’t use a FA explicitly, it is a good

way to think about the problem

34

Finite State Automaton (FSA)

•  A finite set of states
–  One marked as initial state
–  One or more marked as final states
–  States sometimes labeled or numbered

•  A set of transitions from state to state
–  Each labeled with symbol from Σ, or ε

•  Operate by reading input symbols (usually characters)
–  Transition can be taken if labeled with current symbol
–  ε-transition can be taken at any time

•  Accept when final state reached & no more input
–  Scanner slightly different – accept longest match each

time called, even if more input; i.e., run the FSA each
time the scanner is called

•  Reject if no transition possible or no more input and not in
final state (DFA)

35

Example: FSA for “cat”

36

a t c

DFA vs NFA

•  Deterministic Finite Automata (DFA)
–  No choice of which transition to take under any

condition
•  Non-deterministic Finite Automata (NFA)

–  Choice of transition in at least one case
–  Accept - if some way to reach final state on given

input
–  Reject - if no possible way to final state

37

FAs in Scanners

•  Want DFA for speed (no backtracking)
•  Conversion from regular expressions to NFA is easy
•  There is a well-defined procedure for converting a

NFA to an equivalent DFA
–  See any formal language or compiler textbooks for

details (RE to NFA to DFA to minimized DFA)

38

Example: DFA for hand-written scanner

•  Idea: show a hand-written DFA for some typical
programming language constructs
–  Then use the DFA to construct a hand-written

scanner
•  Setting: Scanner is called whenever the parser needs

a new token
–  Scanner stores current position in input file
–  Starting there, use a DFA to recognize the longest

possible input sequence that makes up a token
and return that token, and update the “current
position”

39

Scanner DFA Example (1)

40

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

Scanner DFA Example (2)

41

Accept NEQ
! 6

Accept NOT 7

5 =

other

Accept LEQ
< 9

Accept LESS 10

8 =

other

Scanner DFA Example (3)

42

[0-9]

Accept INT 12

11

other

[0-9]

Scanner DFA Example (4)

•  Strategies for handling identifiers vs keywords
–  Hand-written scanner: look up identifier-like things in table of

keywords to classify (good application of perfect hashing)
–  Machine-generated scanner: generate DFA with appropriate

transitions to recognize keywords
•  Lots ’o states, but efficient (no extra lookup step)

43

[a-zA-Z]

Accept ID or keyword 14

13

other

[a-zA-Z0-9_]

Implementing a Scanner by Hand:
Token Representation
•  A token is a simple, tagged structure. Something like:

public class Token {
 public int kind; // token’s lexical class
 public int intVal; // integer value if class = INT
 public String id; // actual identifier if class = ID
 // lexical classes
 public static final int EOF = 0; // “end of file” token
 public static final int ID = 1; // identifier, not keyword
 public static final int INT = 2; // integer
 public static final int LPAREN = 4;
 public static final int SCOLN = 5;
 public static final int WHILE = 6;
 // etc. etc. etc. … // but use enums if you’ve got ‘em

44

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

45

Scanner getToken() method
// return next input token
public Token getToken() {
 Token result;

 skipWhiteSpace();

 if (no more input) {

 result = new Token(Token.EOF); return result;
 }

 switch(nextch) {

 case '(': result = new Token(Token.LPAREN); getch(); return result;
 case ‘)': result = new Token(Token.RPAREN); getch(); return result;
 case ‘;': result = new Token(Token.SCOLON); getch(); return result;

 // etc. …

46

getToken() (2)
 case '!': // ! or !=
 getch();
 if (nextch == '=') {
 result = new Token(Token.NEQ); getch(); return result;
 } else {
 result = new Token(Token.NOT); return result;
 }

 case '<': // < or <=
 getch();
 if (nextch == '=') {
 result = new Token(Token.LEQ); getch(); return result;
 } else {
 result = new Token(Token.LESS); return result;
 }
 // etc. …

47

getToken() (3)

 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 // integer constant
 String num = nextch;
 getch();
 while (nextch is a digit) {
 num = num + nextch; getch();
 }
 result = new Token(Token.INT, Integer(num).intValue());
 return result;
 …

48

getToken (4)

 case 'a': … case 'z':
 case 'A': … case 'Z': // id or keyword
 string s = nextch; getch();
 while (nextch is a letter, digit, or underscore) {
 s = s + nextch; getch();
 }
 if (s is a keyword) {
 result = new Token(keywordTable.getKind(s));
 } else {
 result = new Token(Token.ID, s);
 }
 return result;

49

Alternatives

•  Use a tool to build the scanner from the (regexp)
grammar
–  Often can be more efficient than hand-coded!

•  Build an ad-hoc scanner using regular expression
package in implementation language
–  Ruby, Perl, Java, many others
–  Suggest you use this for our project (good excuse

to learn the Ruby regexp package)

50

