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Agenda 

•  Overview of language recognizers 
•  Basic concepts of formal grammars  
•  Scanner Theory 

–  Regular expressions 
–  Finite automata (to recognize regular expressions) 

•  Scanner Implementation 
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And the point is…  

•  How do execute this? 

int nPos = 0; 
int k = 0; 
while (k < length) { 

 if (a[k] > 0) { 
    nPos++; 
 } 

} 

•  How do we understand what it means? 
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Compilers vs. Interpreters (review) 

•  Interpreter 
–  A program that reads a source program and 

executes that program 
•  Compiler 

–  A program that translates a program from one 
language (the source) to another (the target) 
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Interpreter 

•  Interpreter 
–  Execution engine 
–  Program execution interleaved with analysis 

 running = true; 
 while (running) { 
     analyze next statement; 
     execute that statement; 
 } 

–  May involve repeated analysis of some statements 
(loops, functions) 
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Compiler 

•  Read and analyze entire program 
•  Translate to semantically equivalent program in 

another language 
–  Presumably easier to execute or more efficient 
–  Should “improve” the program in some fashion 

•  Offline process 
–  Tradeoff: compile time overhead (preprocessing 

step) vs execution performance 
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Hybrid approaches 

•  Well-known example: Java 
–  Compile Java source to byte codes – Java Virtual 

Machine language (.class files) 
–  Execution 

•  Interpret byte codes directly, or 
•  Compile some or all byte codes to native code 

–  Just-In-Time compiler (JIT) – detect hot spots & 
compile on the fly to native code 

•  Variation: .NET 
–  Compilers generate MSIL 
–  All IL compiled to native code before execution 
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Compiler/Interpreter Structure 

•  First approximation 
–  Front end: analysis 

•  Read source program and understand its 
structure and meaning 

–  Back end: synthesis 
•  Execute or generate equivalent target program 
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Common Issues 

•  Compilers and interpreters both must read the input – 
a stream of characters – and “understand” it: analysis 

w h i l e ( k < l e n g t h ) { <nl> 
<tab> i f ( a [ k ] > 0  
) <nl> <tab> <tab>{ n P o s + + ; } 
<nl> <tab> } 
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Programming Language Specs 

•  Since the 1960s, the syntax of every significant 
programming language has been specified by a 
formal grammar 
–  First done in 1959 with BNF (Backus-Naur Form 

or Backus-Normal Form) used to specify the 
syntax of ALGOL 60 

–  Adapted from the linguistics community 
(Chomsky) 
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Grammar for a Tiny Language 

program ::= statement | program statement 
statement ::= assignStmt | ifStmt 
assignStmt ::= id = expr ; 
ifStmt ::= if ( expr ) statement 
expr ::= id | int | expr + expr 
id ::= a | b | c | i | j | k | n | x | y | z 
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Context-Free Grammars 

Formally, a grammar G  is a tuple <N,Σ,P,S> where 
N  a finite set of non-terminal symbols 
Σ  a finite set of terminal symbols 
P  a finite set of productions 

A subset of N × (N  ∪  Σ )* 
S  the start symbol, a distinguished element of N  

If not specified otherwise, this is usually assumed 
to be the non-terminal on the left of the first 
production 
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Productions 

•  The rules of a grammar are called productions 
•  Rules contain 

–  Nonterminal symbols: grammar variables (program, 
statement, id, etc.) 

–  Terminal symbols: concrete syntax that appears in programs 
(a, b, c, 0, 1, if, (, {, ), }, … 

•  Meaning of  
  nonterminal ::= <sequence of terminals and nonterminals> 

–  In a derivation, an instance of nonterminal can be replaced 
by the sequence of terminals and nonterminals on the right 
of the production 

•  Often, there are two or more productions for a single 
nonterminal – can use either at different points in a derivation 
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Alternative Notations 

•  There are several common notations for productions; 
all mean the same thing 
 
ifStmt ::= if ( expr ) stmt 
ifStmt      if ( expr ) stmt 
<ifStmt> ::= if ( <expr> ) <stmt> 
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Example Derivation 

 
 
a  =  1  ;              if   (   a    +    1   )                 b   =   2  ; 
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program ::= statement | program statement 
statement ::= assignStmt | ifStmt 
assignStmt ::= id = expr ; 
ifStmt ::= if ( expr ) statement 
expr ::= id | int | expr + expr 
id ::= a | b | c | i | j | k | n | x | y | z 
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
 



Parsing 

•  Parsing: reconstruct the derivation (syntactic 
structure) of a program 

•  In principle, a single recognizer could work directly 
from the concrete, character-by-character grammar 

•  In practice this is never done 
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Parsing & Scanning 

•  In real compilers the recognizer is split into two 
phases 
–  Scanner: translate input characters to tokens 

•  Also, report lexical errors like illegal characters 
and illegal symbols 

–  Parser: read token stream and reconstruct the 
derivation 

•  Typically a procedural interface – parser asks the 
scanner for new tokens when needed 
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Scanner Example 

•  Input text 
// this statement does very little 
if (x >= y) y = 42; 

•  Token Stream 

–  Tokens are atomic items, not character strings 
–  Comments and whitespace are not  tokens in most 

programming languages 
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IF LPAREN ID(x) GEQ ID(y) 

RPAREN ID(y) BECOMES INT(42) SCOLON 



Parser Example 

•  Token Stream Input 
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•  Abstract Syntax Tree 

IF LPAREN ID(x) 

GEQ ID(y) RPAREN 

ID(y) BECOMES 

INT(42) SCOLON 

ifStmt 

>= 

ID(x) ID(y) 

assign 

ID(y) INT(42) 



Why Separate the Scanner and Parser? 

•  Simplicity & Separation of Concerns 
–  Scanner hides details from parser (comments, 

whitespace, etc.) 
–  Parser is easier to build; has simpler input stream 

(tokens) 
•  Efficiency 

–  Scanner can use simpler, faster design 
•  (But still often consumes a surprising amount of 

the compiler’s total execution time if you’re not 
careful) 
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Tokens 

•  Idea: we want a distinct token kind (lexical class) for 
each distinct terminal symbol in the programming 
language 
–  Examine the grammar to find these 

•  Some tokens may have attributes. Examples: 
–  All integer constants are a single kind of token, but 

the actual value (17, 42, …) will be an attribute 
–  Identifier tokens carry a string with the id 
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Typical Programming Language Tokens  

•  Operators & Punctuation 
–  + - * / ( ) { } [ ] ; : :: < <= == = != ! … 
–  Each of these is a distinct lexical class 

•  Keywords 
–  if while for goto return switch void  … 
–  Each of these is also a distinct lexical class (not a string) 

•  Identifiers 
–  A single ID lexical class, but parameterized by actual id 

•  Integer constants 
–  A single INT lexical class, but parameterized by int value 

•  Other constants, etc. 
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Principle of Longest Match 

•  In most languages, the scanner should pick the 
longest possible string to make up the next token if 
there is a choice 

•  Example 
return iffy != todo; 

should be recognized as 5 tokens 

  
not more (i.e., not parts of words or identifiers, or ! 
and = as separate tokens) 
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RETURN ID(iffy) NEQ ID(todo) SCOLON 



Formal Languages & Automata 
Theory (in one slide) 
•  Alphabet: a finite set of symbols 
•  String: a finite, possibly empty sequence of symbols from 

an alphabet 
•  Language: a set, often infinite, of strings 
•  Finite specifications of (possibly infinite) languages 

–  Automaton – a recognizer; a machine that accepts all 
strings in a language (and rejects all other strings) 

–  Grammar – a generator; a system for producing all 
strings in the language (and no other strings) 

•  A particular language may be specified by many different 
grammars and automata 

•  A grammar or automaton specifies only one language 
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Regular Expressions and FAs 

•  The lexical grammar (structure) of most programming 
languages can be specified with regular expressions 
–  Aside: Difficulties with Fortran, some others 

•  Tokens can be recognized by a deterministic finite 
automaton 
–  Can be either table-driven or built by hand based 

on lexical grammar 
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Regular Expressions 

•  Defined over some alphabet Σ 
–  For programming languages, commonly ASCII or 

Unicode 
•  If re is a regular expression, L(re ) is the language 

(set of strings) generated by re 
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Fundamental REs 

re L(re ) Notes 

a { a } Singleton set, for each a in Σ 

ε { ε } Empty string 

{ } Empty language 
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Operations on REs 

re L(re ) Notes 
rs L(r)L(s) Concatenation 
r | s L(r)    L(s) Combination (union) 
r* L(r)* 0 or more occurrences 

(Kleene closure) 
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•  Precedence: * (highest), concatenation, | (lowest) 
•  Parentheses can be used to group REs as needed 

∪



Abbreviations 

Abbr. Meaning Notes 

r+ (rr*) 1 or more occurrences 

r? (r | ε) 0 or 1 occurrence 

[a-z] (a|b|…|z) 1 character in given range 

[abxyz] (a|b|x|y|z) 1 of the given characters 
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•  The basic operations generate all possible regular 
expressions, but there are common abbreviations 
used for convenience.  Typical examples: 



Examples 

re Meaning 
+ single + character 
! single ! character 
= single = character 
!= 2 character sequence 
<= 2 character sequence 
hogwash 7 character sequence 
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More Examples 

re Meaning 

[abc]+ 

[abc]* 

[0-9]+ 

[1-9][0-9]* 

[a-zA-Z][a-zA-Z0-9_]* 
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Abbreviations 

•  Many systems allow abbreviations to make writing 
and reading definitions easier 

  name ::= re 

–  Restriction: abbreviations may not be circular 
(recursive) either directly or indirectly 

(otherwise it would no longer be a regular 
expression – would be a context-free grammar) 
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Example 

•  Possible syntax for numeric constants 

 digit ::= [0-9] 
 digits ::= digit+ 
 number ::= digits  ( . digits )? 
        ( [eE] (+ | -)? digits ) ? 
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Recognizing REs 

•  Finite automata can be used to recognize strings 
generated by regular expressions 

•  Can build by hand or automatically 
–  Not totally straightforward, but can be done 

systematically 
–  Tools like Lex, Flex, and JLex do this 

automatically from a set of REs read as input 
–  Even if you don’t use a FA explicitly, it is a good 

way to think about the problem 
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Finite State Automaton (FSA) 

•  A finite set of states 
–  One marked as initial state 
–  One or more marked as final states 
–  States sometimes labeled or numbered 

•  A set of transitions from state to state 
–  Each labeled with symbol from Σ, or ε 

•  Operate by reading input symbols (usually characters) 
–  Transition can be taken if labeled with current symbol 
–  ε-transition can be taken at any time 

•  Accept when final state reached & no more input 
–  Scanner slightly different – accept longest match each 

time called, even if more input; i.e., run the FSA each 
time the scanner is called 

•  Reject if no transition possible or no more input and not in 
final state (DFA) 

35 



Example: FSA for “cat” 
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DFA vs NFA 

•  Deterministic Finite Automata (DFA) 
–  No choice of which transition to take under any 

condition 
•  Non-deterministic Finite Automata (NFA) 

–  Choice of transition in at least one case 
–  Accept - if some way to reach final state on given 

input 
–  Reject - if no possible way to final state 
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FAs in Scanners 

•  Want DFA for speed (no backtracking) 
•  Conversion from regular expressions to NFA is easy 
•  There is a well-defined procedure for converting a 

NFA to an equivalent DFA 
–  See any formal language or compiler textbooks for 

details (RE to NFA to DFA to minimized DFA) 

38 



Example: DFA for hand-written scanner 

•  Idea: show a hand-written DFA for some typical 
programming language constructs 
–  Then use the DFA to construct a hand-written 

scanner 
•  Setting: Scanner is called whenever the parser needs 

a new token 
–  Scanner stores current position in input file 
–  Starting there, use a DFA to recognize the longest 

possible input sequence that makes up a token 
and return that token, and update the “current 
position” 
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Scanner DFA Example (1) 
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0 

Accept LPAREN 
( 

2 

Accept RPAREN 
) 

3 

whitespace 
or comments 

Accept SCOLON 
; 

4 

Accept EOF 
end of input 

1 



Scanner DFA Example (2) 
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Accept NEQ 
! 6 

Accept NOT 7 

5 = 

other 

Accept LEQ 
< 9 

Accept LESS 10 

8 = 

other 



Scanner DFA Example (3) 
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[0-9] 

Accept INT 12 

11 

other 

[0-9] 



Scanner DFA Example (4) 

•  Strategies for handling identifiers vs keywords 
–  Hand-written scanner: look up identifier-like things in table of 

keywords to classify (good application of perfect hashing) 
–  Machine-generated scanner: generate DFA with appropriate 

transitions to recognize keywords 
•  Lots ’o states, but efficient (no extra lookup step) 
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[a-zA-Z] 

Accept ID or keyword 14 

13 

other 

[a-zA-Z0-9_] 



Implementing a Scanner by Hand: 
Token Representation 
•  A token is a simple, tagged structure. Something like: 

public class Token { 
 public int kind;             // token’s lexical class 
 public int intVal; // integer value if class = INT 
 public String id;  // actual identifier if class = ID 
 // lexical classes 
 public static final int EOF = 0;     // “end of file” token 
 public static final int ID   = 1;     // identifier, not keyword 
 public static final int INT = 2;     // integer 
 public static final int LPAREN = 4; 
 public static final int SCOLN   = 5;   
 public static final int WHILE   = 6; 
 // etc. etc. etc. …              // but use enums if you’ve got ‘em 
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Simple Scanner Example 

// global state and methods 
 
static char nextch;  // next unprocessed input character 
 
// advance to next input char 
void getch() { … } 
 
// skip whitespace and comments 
void skipWhitespace() { … } 
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Scanner getToken() method 
// return next input token 
public Token getToken() { 
  Token result; 
 
  skipWhiteSpace(); 
 
  if (no more input) { 

 result = new Token(Token.EOF); return result; 
  } 
 
  switch(nextch) { 

 case '(': result = new Token(Token.LPAREN); getch(); return result;  
 case ‘)': result = new Token(Token.RPAREN); getch(); return result; 
 case ‘;': result = new Token(Token.SCOLON); getch(); return result; 
  
 // etc. … 
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getToken() (2) 
 case '!':   // ! or != 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.NEQ); getch(); return result; 
     } else { 
       result = new Token(Token.NOT); return result; 
     } 

   
 case '<':   // < or <= 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.LEQ); getch(); return result; 
     } else { 
       result = new Token(Token.LESS); return result; 
     } 
 // etc. … 
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getToken() (3) 

  case '0': case '1': case '2': case '3': case '4':  
  case '5': case '6': case '7': case '8': case '9':  
     // integer constant 
     String num = nextch; 
     getch(); 
     while (nextch is a digit) { 
        num = num + nextch; getch(); 
     } 
     result = new Token(Token.INT, Integer(num).intValue()); 
     return result; 
 … 

48 



getToken (4) 

 case 'a': … case 'z': 
 case 'A': … case 'Z':   // id or keyword 
  string s = nextch; getch(); 
  while (nextch is a letter, digit, or underscore) { 
     s = s + nextch; getch(); 
  } 
  if (s is a keyword) { 
     result = new Token(keywordTable.getKind(s)); 
  } else { 
     result = new Token(Token.ID, s); 
  } 
  return result; 
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Alternatives 

•  Use a tool to build the scanner from the (regexp) 
grammar 
–  Often can be more efficient than hand-coded! 

•  Build an ad-hoc scanner using regular expression 
package in implementation language 
–  Ruby, Perl, Java, many others 
–  Suggest you use this for our project (good excuse 

to learn the Ruby regexp package) 
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