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Agenda 

•  Top-Down Parsing 
•  Predictive Parsers 
•  LL(k) Grammars 
•  Recursive Descent 
•  Grammar Hacking 

–  Left recursion removal 
–  Factoring 
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Basic Parsing Strategies (1) 

•  Bottom-up 
–  Build up tree from leaves 

•  Shift next input or reduce using a production 
•  Accept when all input read and reduced to start 

symbol of the grammar 
–  LR(k) and subsets (SLR(k), LALR(k), …) 
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Basic Parsing Strategies (2) 

•  Top-Down 
–  Begin at root with start symbol of grammar 
–  Repeatedly pick a non-terminal and expand 
–  Success when expanded tree matches input 
–  LL(k) 

A 
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Top-Down Parsing 

•  Situation: have completed part of a leftmost derivation 
 S =>* wAα =>* wxy 

•  Basic Step: Pick some production 
 A ::= β1 β2 … βn  

 that will properly expand A 
to match the input 
–  Want this to be  

deterministic 
 
 
                                                      w                         x              y 
 

A 
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Predictive Parsing 

•  If we are located at some non-terminal A, and 
there are two or more possible productions 

 A ::= α 
 A ::= β 

 we want to make the correct choice by 
looking at just the next input symbol 

•  If we can do this, we can build a predictive 
parser that can perform a top-down parse 
without backtracking 
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Sounds hard, but … 

•  Programming language grammars are often 
suitable for predictive parsing 

•  Typical example 
 stmt ::= id = exp ; | return exp ;  
         |  if ( exp ) stmt  | while ( exp ) stmt  

 If the remaining unparsed input begins with 
the tokens 
  IF  LPAREN  ID(x) … 

 we should expand stmt  to an if-statement  
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LL(k) Property 

•  A grammar has the LL(1) property if, for all non-
terminals A, when 
  A ::= α 
  A ::= β  
 both appear in the grammar, then: 
 
  FIRST(α)    FIRST(β) = Ø  
 
 (FIRST(α) = set of terminals that begin any possible 
string derived from α) 

•  If a grammar has the LL(1) property, we can build a 
predictive parser for it that uses 1-symbol lookahead 


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LL(k) Parsers 

•  An LL(k) parser 
–  Scans the input Left to right 
–  Constructs a Leftmost derivation 
–  Looking ahead at most k symbols 

•  1-symbol lookahead is enough for many realistic 
programming language grammars 
–  LL(k) for k>1 is very rare in practice 
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LL vs LR (1) 

•  Table-driven parsers for both LL and LR can be 
automatically generated by tools 

•  LL(1) has to make a decision based on a single non-
terminal and the next input symbol 

•  LR(1) can base the decision on the entire left context 
as well as the next input symbol 
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LL vs LR (2) 

•  ∴ LR(1) is more powerful than LL(1) 
–  Includes a larger set of grammars 

•  But 
–  It is easier to write a LL(1) parser by hand 
–  There are some very good LL parser tools out 

there (ANTLR, JavaCC, …) 
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Recursive-Descent Parsers 

•  An advantage of top-down parsing is that it is easy to 
implement by hand 

•  Key idea: write a function (procedure, method) 
corresponding to each non-terminal in the grammar 
–  Each of these functions is responsible for 

matching the next part of the input with the non-
terminal it recognizes 
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Example: Statements 

Grammar 
 
stmt ::= id = exp ; 

     | return exp ; 
     | if ( exp ) stmt 
     | while ( exp ) stmt  

Method for this grammar rule 
 
// parse stmt ::= id=exp; | … 
void stmt( ) { 
  switch(nextToken) { 

 RETURN: returnStmt(); break; 
 IF:  ifStmt(); break; 
 WHILE: whileStmt(); break; 
 ID: assignStmt(); break; 

  } 
} 
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Example (cont) 

// parse while (exp) stmt 
void whileStmt() { 

 // skip “while (” 
 getNextToken(); 
 getNextToken(); 

 
 // parse condition 
 exp(); 

 
 // skip “)” 
 getNextToken(); 

 
 // parse stmt 
 stmt(); 

} 

// parse return exp ; 
void returnStmt() { 

 // skip “return” 
 getNextToken(); 

 
 // parse expression 
 exp(); 

 
 // skip “;” 
 getNextToken(); 

} 
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Invariant for Parser Functions 

•  The parser functions need to agree on where they 
are in the input 

•  Useful (typical) invariant: When a parser function is 
called, the current token (next unprocessed piece of 
the input) is the token that begins the expanded non-
terminal being parsed 
–  Corollary: when a parser function terminates, it 

must have completely consumed input 
corresponding to that non-terminal 
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Possible Problems 

•  Two common problems for recursive-descent (and  
LL(1)) parsers: 

–  Left recursion (e.g., E ::= E  + T  | …) 

–  Common prefixes on the right hand side of 
productions 
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Left Recursion Problem 

•  Grammar rule 
 
expr ::= expr  + term 

  | term 
 

•  And the bug is???? 

•  Code 
 
// parse expr ::= … 
void expr() { 

 expr(); 
 if (current token is PLUS) { 
  getNextToken(); 
  term(); 
 } 

} 
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Left Recursion Problem 

•  If we code up a left-recursive rule as-is, we get an 
infinite recursion 

•  Non-solution: replace with a right-recursive rule 

     expr ::= term + expr  |  term 

–  Why isn’t this the right thing to do? 
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One Left Recursion Solution 

•  Rewrite using right recursion and a new non-
terminal 

•  Original:  expr ::= expr + term  |  term 
•  New 

 expr ::= term exprtail 
 exprtail ::= + term exprtail  |  ε 

•  Properties 
–  No infinite recursion if coded up directly 
–  Maintains left associatively (required) 

19 



Another Way to Look at This 

•  Observe that 
 expr ::= expr + term | term 

 generates the sequence 
 term + term + term + … + term 

•  We can sugar the original rule to match 
 expr ::= term { + term }* 

•  This leads directly to parser code 
–  But need to fudge things to respect the original 

precedence/associativity 
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Code for Expressions (1) 

// parse 
//    expr ::=  term { + term }* 

void expr() { 
 term(); 

 
 while (next symbol is PLUS) { 
  // consume PLUS 
  getNextToken();  

 
  term(); 
 } 

} 

// parse 
//     term ::= factor { * factor }* 

void term() { 
 factor(); 

 
 while (next symbol is  TIMES) { 
  // consume TIMES 
  getNextToken();  

 
  factor(); 
 } 

} 
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Code for Expressions (2) 

// parse  
//    factor ::= int | id | ( expr ) 

void factor() { 
  switch(nextToken) { 
 

 case INT: 
  process int constant; 
   // consume INT 

 getNextToken(); 
  break;   
 … 

 
 case ID: 
  process identifier; 
   // consume ID 

 getNextToken(); 
  break; 
 case LPAREN: 
   // consume LPAREN 

 getNextToken(); 
  expr(); 
   // consume RPAREN 

 getNextToken(); 
 } 

}   

22 



Left Factoring 

•  If two rules for a non-terminal have right-hand sides 
that begin with the same symbol, we can’t predict 
which one to use 

•  “Official” solution: Factor the common prefix into a 
separate production 
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Left Factoring Example 

•  Original grammar: 
 

 ifStmt ::= if ( expr  ) stmt 
     | if ( expr  ) stmt  else stmt 

•  Factored grammar: 
 

 ifStmt ::= if ( expr  ) stmt  ifTail 
 ifTail  ::= else stmt  | ε  
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Parsing if Statements 

•  But it’s easiest to just 
code up the “else 
matches closest if” 
rule directly 

// parse  
//     if (expr) stmt [ else stmt ] 
 
void ifStmt() { 

 getNextToken(); 
 getNextToken(); 
 expr(); 
 getNextToken(); 
 stmt(); 
 if (next symbol is ELSE) { 
  getNextToken(); 
  stmt(); 
 } 

} 
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Top-Down Parsing Concluded 

•  Works with a somewhat smaller set of grammars than 
bottom-up, but can be done for most sensible 
programming language constructs 

•  If you need to write a quick-n-dirty parser, recursive 
descent is often the method of choice 
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