
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Top-Down and Recursive-Descent Parsing

1

Agenda

•  Top-Down Parsing
•  Predictive Parsers
•  LL(k) Grammars
•  Recursive Descent
•  Grammar Hacking

–  Left recursion removal
–  Factoring

2

Basic Parsing Strategies (1)

•  Bottom-up
–  Build up tree from leaves

•  Shift next input or reduce using a production
•  Accept when all input read and reduced to start

symbol of the grammar
–  LR(k) and subsets (SLR(k), LALR(k), …)

3

remaining input

Basic Parsing Strategies (2)

•  Top-Down
–  Begin at root with start symbol of grammar
–  Repeatedly pick a non-terminal and expand
–  Success when expanded tree matches input
–  LL(k)

A

4

Top-Down Parsing

•  Situation: have completed part of a leftmost derivation
 S =>* wAα =>* wxy

•  Basic Step: Pick some production
 A ::= β1 β2 … βn

 that will properly expand A
to match the input
–  Want this to be

deterministic

 w x y

A

5

Predictive Parsing

•  If we are located at some non-terminal A, and
there are two or more possible productions

 A ::= α
 A ::= β

 we want to make the correct choice by
looking at just the next input symbol

•  If we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

6

Sounds hard, but …

•  Programming language grammars are often
suitable for predictive parsing

•  Typical example
 stmt ::= id = exp ; | return exp ;
 | if (exp) stmt | while (exp) stmt

 If the remaining unparsed input begins with
the tokens
 IF LPAREN ID(x) …

 we should expand stmt to an if-statement

7

LL(k) Property

•  A grammar has the LL(1) property if, for all non-
terminals A, when
 A ::= α
 A ::= β
 both appear in the grammar, then:

 FIRST(α) FIRST(β) = Ø

 (FIRST(α) = set of terminals that begin any possible
string derived from α)

•  If a grammar has the LL(1) property, we can build a
predictive parser for it that uses 1-symbol lookahead



8

LL(k) Parsers

•  An LL(k) parser
–  Scans the input Left to right
–  Constructs a Leftmost derivation
–  Looking ahead at most k symbols

•  1-symbol lookahead is enough for many realistic
programming language grammars
–  LL(k) for k>1 is very rare in practice

9

LL vs LR (1)

•  Table-driven parsers for both LL and LR can be
automatically generated by tools

•  LL(1) has to make a decision based on a single non-
terminal and the next input symbol

•  LR(1) can base the decision on the entire left context
as well as the next input symbol

10

LL vs LR (2)

•  ∴ LR(1) is more powerful than LL(1)
–  Includes a larger set of grammars

•  But
–  It is easier to write a LL(1) parser by hand
–  There are some very good LL parser tools out

there (ANTLR, JavaCC, …)

11

Recursive-Descent Parsers

•  An advantage of top-down parsing is that it is easy to
implement by hand

•  Key idea: write a function (procedure, method)
corresponding to each non-terminal in the grammar
–  Each of these functions is responsible for

matching the next part of the input with the non-
terminal it recognizes

12

Example: Statements

Grammar

stmt ::= id = exp ;

 | return exp ;
 | if (exp) stmt
 | while (exp) stmt

Method for this grammar rule

// parse stmt ::= id=exp; | …
void stmt() {
 switch(nextToken) {

 RETURN: returnStmt(); break;
 IF: ifStmt(); break;
 WHILE: whileStmt(); break;
 ID: assignStmt(); break;

 }
}

13

Example (cont)

// parse while (exp) stmt
void whileStmt() {

 // skip “while (”
 getNextToken();
 getNextToken();

 // parse condition
 exp();

 // skip “)”
 getNextToken();

 // parse stmt
 stmt();

}

// parse return exp ;
void returnStmt() {

 // skip “return”
 getNextToken();

 // parse expression
 exp();

 // skip “;”
 getNextToken();

}

14

Invariant for Parser Functions

•  The parser functions need to agree on where they
are in the input

•  Useful (typical) invariant: When a parser function is
called, the current token (next unprocessed piece of
the input) is the token that begins the expanded non-
terminal being parsed
–  Corollary: when a parser function terminates, it

must have completely consumed input
corresponding to that non-terminal

15

Possible Problems

•  Two common problems for recursive-descent (and
LL(1)) parsers:

–  Left recursion (e.g., E ::= E + T | …)

–  Common prefixes on the right hand side of
productions

16

Left Recursion Problem

•  Grammar rule

expr ::= expr + term

 | term

•  And the bug is????

•  Code

// parse expr ::= …
void expr() {

 expr();
 if (current token is PLUS) {
 getNextToken();
 term();
 }

}

17

Left Recursion Problem

•  If we code up a left-recursive rule as-is, we get an
infinite recursion

•  Non-solution: replace with a right-recursive rule

 expr ::= term + expr | term

–  Why isn’t this the right thing to do?

18

One Left Recursion Solution

•  Rewrite using right recursion and a new non-
terminal

•  Original: expr ::= expr + term | term
•  New

 expr ::= term exprtail
 exprtail ::= + term exprtail | ε

•  Properties
–  No infinite recursion if coded up directly
–  Maintains left associatively (required)

19

Another Way to Look at This

•  Observe that
 expr ::= expr + term | term

 generates the sequence
 term + term + term + … + term

•  We can sugar the original rule to match
 expr ::= term { + term }*

•  This leads directly to parser code
–  But need to fudge things to respect the original

precedence/associativity

20

Code for Expressions (1)

// parse
// expr ::= term { + term }*

void expr() {
 term();

 while (next symbol is PLUS) {
 // consume PLUS
 getNextToken();

 term();
 }

}

// parse
// term ::= factor { * factor }*

void term() {
 factor();

 while (next symbol is TIMES) {
 // consume TIMES
 getNextToken();

 factor();
 }

}

21

Code for Expressions (2)

// parse
// factor ::= int | id | (expr)

void factor() {
 switch(nextToken) {

 case INT:
 process int constant;
 // consume INT

 getNextToken();
 break;
 …

 case ID:
 process identifier;
 // consume ID

 getNextToken();
 break;
 case LPAREN:
 // consume LPAREN

 getNextToken();
 expr();
 // consume RPAREN

 getNextToken();
 }

}

22

Left Factoring

•  If two rules for a non-terminal have right-hand sides
that begin with the same symbol, we can’t predict
which one to use

•  “Official” solution: Factor the common prefix into a
separate production

23

Left Factoring Example

•  Original grammar:

 ifStmt ::= if (expr) stmt
 | if (expr) stmt else stmt

•  Factored grammar:

 ifStmt ::= if (expr) stmt ifTail
 ifTail ::= else stmt | ε

24

Parsing if Statements

•  But it’s easiest to just
code up the “else
matches closest if”
rule directly

// parse
// if (expr) stmt [else stmt]

void ifStmt() {

 getNextToken();
 getNextToken();
 expr();
 getNextToken();
 stmt();
 if (next symbol is ELSE) {
 getNextToken();
 stmt();
 }

}

25

Top-Down Parsing Concluded

•  Works with a somewhat smaller set of grammars than
bottom-up, but can be done for most sensible
programming language constructs

•  If you need to write a quick-n-dirty parser, recursive
descent is often the method of choice

26

